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1. INTRODUCTION

The ability of the mantle and lithosphere to creep over geologic time scales is
due to the presence of naturally occurring atomic-scale defects in the lattice of
crystal grains (e.g., Weertman and Weertman, 1975; Carter, 1976; Nicolas and
Poirier, 1976; Weertman, 1978). The imposition of deviatoric stresses causes these
defects to propagate and thus allows mantle material to creep or “flow.” If the
ambient temperature is sufficiently high, this solid-state flow will persist so long
as the stress is maintained and the deformation process may achieve steady state.
The steady-state creep of crystalline substances may be characterized by a single
parameter, the effective viscosity (e.g., Stocker and Ashby, 1973; Weertman and
Weertman, 1975).

This effective viscosity n provides the link between imposed deviatoric stress
and resulting deviatoric strain rate as follows:

Ty = 2n Ei/" (D

in which E; is the deviatoric strain-rate tensor and 7, is the deviatoric stress tensor.
The deviatoric strain-rate tensor is defined in terms of the material flow velocity
u as follows:

1 2
E; = 3 (8,»uj + du; — 3 8kuk5,;,->, 2)
where d; = 9/dx;. Solid-state creep in crystalline media generally occurs by two
independent mechanisms: dislocation glide and climb (e.g., Weertman, 1968) and
diffusion of point defects through crystal grains and/or along grain boundaries
(e.g., Herring, 1950; Coble, 1963; Green, 1970). The theoretical expression for
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the effective viscosity, derived from detailed consideration of these creep mecha-
nisms, is

3)

AE + PAV
n = Adm"t'~"kT exp[—],

kT

where A is a dimensional constant that depends on the details of the creep mecha-
nism, d is the effective size of crystal grains, 7 = [7,7;]"2 is the square root of the
second stress-tensor invariant (Stocker and Ashby, 1973), k is Boltzmann’s con-
stant, T is the absolute temperature, AE is the diffusion activation energy, AV is
the diffusion activation volume, and P is the total pressure.

The theoretical expression (3) for the effective viscosity of crystalline media is
useful for understanding the importance of viscosity variations in the Earth’s man-
tle. If mantle creep occurred dominantly through diffusion of point defects, the
effective viscosity in (3) would be independent of stress (i.e., n = 1). The grain-
size dependence of diffusion creep is quite pronounced and m = 2 for Herring
(bulk) diffusion and m = 3 for Coble (grain-boundary) diffusion. If mantle creep
instead occurred through propagation of dislocations, the effective viscosity will
be insensitive to grain size (i.e., m = 0) and sensitive to the ambient deviatoric
stress, with the stress exponent n = 3 being typical (e.g., Weertman, 1968; Carter,
1976). In either creep mechanism, steady-state creep is ultimately dependent on
the creation and diffusion of point defects and is therefore thermally activated.
This is manifested by the exponential temperature dependence in (3). The effec-
tive viscosity of the mantle is therefore expected to be most sensitive to variations
in temperature. Over the past decade numerous studies have also indicated the
importance of chemical environment (e.g., the presence of H,O and CO,) on the
effective viscosity of mantle rocks (e.g., Kohlstedt and Hornack, 1981; Ricoult
and Kohlstedt, 1985; Karato et al., 1986; Borch and Green, 1987). The depen-
dence of effective viscosity on grain size, stress, pressure, temperature, and chemi-
cal environment implies that the viscosity of the mantle is expected to be very
heterogeneous, owing to the lateral and depth variation of these thermodynamic
state variables.

The significant mathematical difficulties arising from the treatment of arbitrary
three-dimensional (3D) viscosity variations have led to an overwhelming focus on
mantle flow models in which the viscosity is assumed to be constant, or to vary
with depth only. Such simplifications have nonetheless led to a deep understand-
ing of the basic physics underlying the thermal convection process responsible for
the “drift” of the Earth’s tectonic plates and the global variation of surface heat
flux (e.g., Turcotte and Oxburgh, 1967; McKenzie et al., 1974; Peltier, 1972,
1985; Jarvis and McKenzie, 1980; Jarvis and Peltier, 1982; Solheim and Peltier,
1990, 1993, 1994; Peltier and Solheim, 1992).

Theoretical modeling of mantle flow, based on the simplifying approximation
that the viscosity depends only on depth, culminated with the development of



POLOIDAL-TOROIDAL COUPLING IN MANTLE FLOW 3

models that are used to predict the 3D mantle circulation expected on the basis of
seismically inferred lateral density heterogeneity (e.g., Richards and Hager, 1984;
Ricard et al., 1984; Forte and Peltier, 1987, 1991a). Such flow modeling has dem-
onstrated that the observed long-wavelength nonhydrostatic geoid may be suc-
cessfully described in terms of the seismically inferred global heterogeneity in the
mantle (e.g., Hager et al., 1985; Forte and Peltier, 1987, 1991a; Hager and Clay-
ton, 1989; Forte er al., 1992). There therefore appears to be no evidence in the
long-wavelength geoid data, or indeed the dynamic surface topography data (Forte
et al., 1993a), for the presence of a significant effect due to lateral variations of
mantle viscosity. Since such lateral heterogeneity must exist if the crystalline man-
tle is in a state of motion determined by the thermal convection process, the suc-
cess of these simple models would appear to indicate that the dynamics of flow in
a laterally heterogeneous mantle are such that the existence of lateral rheology
variations does not significantly impact surface observables such as dynamic to-
pography and nonhydrostatic geoid anomalies.

The inadequacy of flow models which assume a spherically symmetric vis-
cosity distribution becomes truly apparent only by considering the observed mo-
tions of the tectonic plates (e.g., Hager and O’Connell, 1981; Forte and Peltier,
1987). In a fluid shell with spherically symmetric viscosity, buoyancy forces ex-
cite only poloidal flow (which produces a pattern of purely converging or diverg-
ing flow at the surface) and thus fails completely to account for the strong toroidal
(i.e. strike—slip) component of actual plate motions (e.g., Hager and O’Connell,
1981; Forte and Peltier, 1987). The observed equipartitioning of kinetic energy
between poloidal and toroidal plate motions is a direct consequence of the plate-
like mechanical structure of the lithosphere. This equipartitioning has also been
investigated by O’Connell ez al. (1991), who suggest that the present-day ratio of
toroidal to poloidal energy in the plate motions appears to be nearly a minimum.
A detailed consideration of the relationship between toroidal energy and the
strike—slip motion of plates at transform faults has been presented by Olson and
Bercovici (1991).

The mere existence of plates, with their “weak” boundaries and relatively
“strong” interiors, implies that the effective viscosity of the lithosphere exhibits
extreme lateral variations. The mathematical difficulties of dealing explicitly with
such extreme variations of rheology have motivated several studies that attempt
to overcome these difficulties by directly employing the observed plate motions
(e.g., Hager and O’Connell, 1981) or by employing the geometry of the plates as
a surface boundary condition (e.g., Ricard and Vigny, 1989; Forte and Peltier,
1991a,b; Gable et al., 1991). Such treatments of the plates are essentially kine-
matic. To model the plates in a dynamically consistent manner, and to understand
the rheologic coupling of poloidal and toroidal surface flow, requires an explicit
treatment of lateral viscosity variations.

The mathematical modeling of lateral viscosity variations in numerical simu-
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lations of thermal convection has been almost exclusively carried out in two-
dimensional (2D) Cartesian geometry. Perhaps the most complete of such studies,
in the detailed investigation of stress-, temperature-, and pressure-dependent vis-
cosity, is that by Christensen (1984). An investigation of the coupling between
distinct Fourier harmonic components of the flow field due to lateral viscosity
variations in a 2D Cartesian geometry has also been carried out by Richards and
Hager (1989). Such studies, confined to 2D geometries, are intrinsically limited
because they cannot describe the excitation of toroidal flows and their coupling to
poloidal flows. A treatment of poloidal—toroidal coupling requires a full 3D mod-
eling approach.

Numerical investigations of lateral viscosity variations in 3D thermal convec-
tion simulations are relatively recent. Christensen and Harder (1991) have carried
out simulations with temperature-dependent viscosity in a 3D Cartesian geometry.
Recent high-Rayleigh-number simulations of thermal convection in 3D Cartesian
geometry, with temperature-dependent viscosity, have also been performed by
Tackley (1993).

Initial investigations of the effects of lateral viscosity variations in 3D spherical
geometry have been rather limited in scope (e.g., Ricard et al., 1988; Stewart,
1992) and are marred by questionable assumptions. (These difficulties are de-
scribed later in this chapter.) Significant progress is now being made on the basis
of several dynamically consistent formulations of the effects of lateral viscosity
variations in the lithosphere (e.g., Ribe, 1992; Forte, 1992) and throughout the
entire volume of the mantle (e.g., Forte, 1992; Cadek et al., 1993; Martinec ef al.,
1993; Zhang and Christensen, 1993).

In this chapter we present a complete description of the recent theoretical de-
velopments and results outlined in Forte (1992). We describe three rather different
but complementary methods for investigating the effects of lateral rheology varia-
tions on mantle—lithosphere flow. In Section 2 we present a formalism for calcu-
lating buoyancy-induced plate motions that explicitly satisfy the constraint that
each plate moves only by a rigid-body rotation. Although this formalism has been
previously employed to model plate motions in Forte and Peltier (1991a,b), a com-
plete mathematical description has not been presented. In Section 2 we therefore
provide a detailed derivation of this formalism and illustrate its implications
through several calculations of buoyancy-induced plate motions. The essentially
kinematic approach described in Section 2 allows us to avoid an explicit consid-
eration of lateral viscosity variations, but we then lose any understanding of the
dynamic processes that generate toroidal flow and determine its coupling to po-
loidal flow.

In Section 3 we therefore present a dynamically consistent treatment of litho-
spheric flow in which the effects of lateral viscosity variations are explicitly in-
cluded. We therein assume that these variations are important only in the litho-
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sphere and may be neglected in the underlying mantle. This assumption allows us
to formulate an inverse problem that we solve for the lateral viscosity variations
in the lithosphere that are consistent with the observed plate velocities.

It is not obvious, however, that lateral variations of viscosity in the deep mantle
are in fact negligible. The seismically inferred lateral variations of elastic-wave
speeds are significant throughout the mantle and the associated temperature varia-
tions are expected, from Eq. (3), to yield significant lateral variations of effective
viscosity. In Section 4 we therefore provide a complete description of a formalism
that allows us to model the effects of 3D viscosity variations in a spherical fluid
shell. This theory is based on a variational formulation of the principle of momen-
tum conservation and provides a mathematically efficient, and physically trans-
parent, description of flow dynamics. This formalism, which was initially outlined
in Forte (1992), represents the principal contribution of this chapter. In Section 5
we summarize our main conclusions.

The reader will note that the discussion in the main text makes frequent refer-
ence to the mathematical Appendixes. In these Appendixes we have assembled,
and in many cases derived, the principal tools required for a mathematical analysis
of flow dynamics in spherical shells with lateral viscosity variations and rigid-
surface plates. While the relegation of much of the formal material to these Ap-
pendixes has helped to streamline the discussion in the main text, the material is
essential for the comprehension of our analysis.

2. BuoyANCY-DRIVEN PLATE MOTIONS

The existence of rigid surface plates with weak boundaries represents an ex-
treme manifestation of lateral variations of effective viscosity in the Earth. Hager
and O’Connell (1981) proposed a procedure for avoiding the explicit treatment of
such rheologic variations that involves matching the stresses exerted by buoyancy-
driven flows, acting on a no-slip surface, with the external stresses associated with
a prescribed plate velocity field. This procedure was modified somewhat in Gable
etal. (1991) and Ricard and Vigny (1989), in which the stresses exerted by buoy-
ancy-driven flow acting on a no-slip surface are matched with the imposed surface
stresses arising from some generally prescribed field of plate-like surface veloci-
ties. This matching then provided the required plate-motion parameters (e.g. the
plate angular-velocity vectors). An important simplifying assumption in this ap-
proach is that the stresses acting on the plate boundaries are taken to be identically
zero. As pointed out in Hager and O’Connell (1981), this assumption is question-
able and does not account for the possibly significant collision-related stresses at
subduction zones or shear stresses along transform boundaries. Such difficulties
motivated the development, described in Forte and Peltier (1991a,b), of a different
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approach to the problem of buoyancy-induced plate motions that does not make
any a priori assumptions concerning the state of stress in the plates. The mathe-
matical development and implementation of this approach is described fully be-
low for the first time.

2.1. Analytic Description of Surface Plate Kinematics

The existence of effectively rigid plates constrained to the move on the surface
of a sphere implies, by Euler’s theorem (e.g., Goldstein, 1980), that the surface
velocity field v(6, ¢) of N plates may be represented by the superposition of the
rigid-body rotations of each plate:

v(0, ¢) = ; H(0, ¢) o X r, 4)

where H,(0, ¢) = 1 wherever plate i is located and H, (8, ¢) = 0 elsewhere, ' is
the angular velocity vector of plate i, and r is the position vector of any location
on the Earth’s surface. The trivial identity 3 H,(, ¢) = 1 may be employed to
rewrite (4) as

N—1

v(O, ¢) = Z H(, )@ — o") X r + o’ X r. (5)

The last term on the right-hand side of (5) represents a net rotation of the litho-
sphere with angular velocity of plate N. Itis clear that, apart from this net rotation,
the surface velocity field is entirely given by the relative rotations of each plate
relative to plate N. For example, the Nuvel-1 model (DeMets ez al., 1990) speci-
fies the plate velocity field by arbitrarily fixing the Pacific plate (i.e., assuming
e, = 0). A convenient representation for the relative rotation rate @' — w" is
given by

o — o’ =V, 6)
where
Q= x (0 — o) + 5@ — o)) + uw — o), (7N

where x,,x,,x; are the Cartesian coordinates of any position r on the Earth’s sur-
face and wj represents the jth Cartesian component of the rotation-rate vector @',
In analogy to Egs. (6) and (7) we also have

oV = VO, (8)

OV = xj0f + nol + xob. )
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Inserting Eqs. (6) and (8) into Eq. (5), we obtain

N—1

V0, §) = — 2 HiB, ) AQ, — AQ, (10)

where A = r X V is related to the angular-momentum operator (see Backus,
1958, and Appendix I). The horizontal divergence V, - v and radial vorticity
7 -V X v provide a complete scalar characterization of the observed plate ve-
locities (Forte and Peltier, 1987), and using Eq. (10) we obtain

1N—]
Vy-v=—- 2 [V, H - AQ], (11)
i=1
1 1
FVXvyv==-A-v= ——2 [AH, - AQ, +HAZQ]——AZQN (12)
a

where r = a is the radius of the Earth’s solid surface, V, is the horizontal gradient
operator on the unit sphere (see Appendix I), and A2 = A - A is the horizontal
Laplacian operator.

In Appendix III we derive the following analytic expressions for the spherical
harmonic coefficients of the divergence and vorticity fields in Egs. (11) and (12):

SV = 2 2 (SHE(@! — o), (13)
(F-V X vp= 2 > (R (i — o) + 2 SaNrwl (14)

Jj=1
in which
(SHe, (R)z, Ny

are defined in Appendix IIl and §,, = 0 whenever € # 1. In (14) we observe that
the net lithospheric rotation associated with the rotation of plate N affects only the
degree € = 1 component of the radial vorticity field and has no effect on the
horizontal divergence coefficients in (13). For degrees € > 1 the horizontal diver-
gence and radial vorticity fields are sensitive to the rotation of each plate relative
only to the rotation of the (arbitrarily specified) Nth plate. On the basis of the
explicit expressions for the elements

($H7 and (R)7
derived in Appendix III we find
(Shr = Fl(Hypa, (HYE, (H)p), 5
(R)e = GI(H)w, (HYr ), us)
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in which we emphasize that (S9)7 is a (linear) function F; of only the degree
¢ +2,¢€, € — 2 components of the plate functions H;(6, ¢) and (R})? is a (linear)
function G, of only the degree £ + 1, € — 1 components of the same plate func-
tions. This implies that the degree € components of the horizontal divergence are
sensitive only to the degree € + 2, €, € — 2 components of the plate geometry
while the degree € radial vorticity depends only on the degree € + 1, € — 1 plate
geometry. The plate divergence and vorticity fields thus provide an independent
and complementary sampling of the geometry of the surface plates. If, for ex-
ample, we have a hypothetical planet with only two hemispherical surface plates
[when the boundary between the plates coincides with the equator we can easily
verify that the harmonic coefficients of each plate function vanish for even degrees
€ thus, according to the rotational invariance expressed in Eq. (4.14) of Edmonds
(1960), we know this will be true for any orientation of the boundary between the
two plates] then the spherical harmonic coefficients of the horizontal divergence
will vanish for even degrees € while the radial vorticity coefficients will vanish
for odd degrees €.

To illustrate the actual use of expressions (13) and (14) let us first consider the
simple example of the hypothetical planet with two hemispherical surface plates
whose mutual boundary coincidences with the equator. It is straightforward to
demonstrate that the harmonic coefficients of plate 1 (the northern-hemisphere
plate) and plate 2 (the southern-hemisphere plate) are given by

(H)?

1 Pr(0) [2€ + 1
8m0 [5 6(/0 + I - 5(’()) s

Pr (0) [2€ + 1
¢+ 1 y2 -1

(Hy)? = Omo [% O — (r - 86’0):|’

in which 6,,, = 0 whenever m # 0, 6,, = 0 whenever € # 0, and Py (x) is the
associated Legendre function that is normalized so that its root-mean-square (rms)
amplitude is 1. In Fig. 1a we plot the amplitude spectrum of H, (6, ¢») in which we
may observe the clear 1/€ amplitude dependence demonstrated in Eq. (17). The
horizontal gradients of the plate functions in Eqs. (11) and (12) are essentially
equivalent to multiplication by € (see Appendix III), in the space of spherical
harmonics, and therefore we expect the plate divergence and vorticity fields to
have a flat amplitude spectrum. This expectation is confirmed in Fig. 1b, in which
we plot the amplitude spectrum of the divergence and vorticity fields, calculated
using Eqgs. (13), (14), and (17), for the following choice of plate rotation vectors:

1 V3
w, = w3, w, = <—E” e 72), ® = 1°/Myr (18)
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FiG. 1. (a) The root-mean-square (rms) amplitude, at each spherical harmonic degree, of the hemi-
spherical plate function H(#, ¢) defined by Eq. (17) in the text. (b) The rms amplitude (units rad/yr),
at each degree, for the horizontal divergence and radial vorticity of the two rotating hemispherical
plates, with geometry defined by Eq. (17). The rotation vectors of the two plates are specified by
Eq. (18) in the text.

(where 1°/Myr = 1 degree per million years). In Fig. 2 we show maps of the actual
two-plate divergence and vorticity fields, in which we observe the usual Gibbs
side lobes that arise in any truncated series representation of discontinuous fields.
An effective means for suppressing such side lobes is to multiply each harmonic
coefficient of the divergence and vorticity fields by the following “Lanczos
smoothing” factor (Lanczos, 1961; Justice, 1978):

Ly = [sin(mw/M)]{sin(&r/L)} _—
mi/M {m/L

The values of L and M may be set equal to the maximum degree and order em-
ployed in the truncated harmonic representation of the given surface field. It
should be understood that when either m = 0 or € = 0 the value of Ly in (19) is
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FiG. 2. The horizontal divergence and radial vorticity fields due to the rotation [given by Eq. (18)
in the text] of the two hemispherical plates defined by Eq. (17). (a) The divergence field [units 10~
(rad/yr)] is synthesized from the spherical harmonic coefficients, defined by Eq. (13), corresponding
to degrees € = 1-32. The shaded areas indicate regions of positive divergence, and unshaded areas
indicate negative divergence. (b) The radial vorticity field (units 10-7 rad/yr) is synthesized from
coefficients, defined by Eq. (14), corresponding to degrees € = 2—32. The shaded areas indicate re-
gions of negative vorticity (local clockwise circulation).

determined by the limit sinx/x — 1 as x — 0. In Fig. 3 we show the effect of
applying this Lanczos smoothing (when L = M = 32) to the original (un-
smoothed) divergence and vorticity fields in Fig. 2.

We now consider the application of Eqs. (13) and (14) to the observed plate
motions on the Earth’s surface. In Fig. 4a we show the amplitude spectrum of the
plate functions H,(6, ¢) corresponding to three different tectonic plates. The very
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a HORIZONTAL DIVERGENCE (L=1-32)

FiG. 3. The smoothed horizontal divergence and radial vorticity fields obtained by multiplying the
harmonic coefficients of the corresponding fields in Fig. 2 by the Lanczos smoothing factors in
Eq. (19) of the text, with L = M = 32.

large African and Pacific plates have an amplitude spectrum that displays the 1/€
variation characteristic of the hemispheric plate shown in Fig. 1a. The smaller
Cocos plate instead displays the flat spectrum more characteristic of a very small
disk (i.e., a 2D delta function). In Fig. 4b we show the amplitude spectrum of the
plate divergence and vorticity calculated according to (13) and (14) and employ-
ing the plate rotation vectors for the absolute-motion model AM1-2 of Minster
and Jordan (1978). In this calculation we treat the Pacific plate as the Nth refer-
ence plate in (13) and (14). In Fig. 4b we observe a relatively flat amplitude spec-
trum, as in Fig. 1b, arising from the dominating contribution of the largest
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FIG. 4. (a) The rms amplitude, at each spherical harmonic degree, of the plate functions H(9, ¢)
corresponding to the Pacific, African, and Cocos tectonic plates. (b) The rms amplitude (units rad/yr),
at each degree, of the horizontal divergence and radial vorticity of the tectonic plate velocities de-
scribed by the rotation vectors in model AM1-2 of Minster and Jordan (1978).

(e.g., Pacific and African) plates. The smaller (e.g., Cocos) plates contribute to the
detailed variability in the amplitude spectrum for large degrees €. The maps of the
plate divergence and vorticity synthesized from a truncated sum (up to degree
€ = 32) of their harmonic coefficients are very “noisy,” due to the strong Gibbs
side lobes. We therefore multiplied these coefficients by the smoothing factors in
(19) for L = M = 32 and the resulting smoothed divergence and vorticity fields
are shown in Fig. 5. The horizontal plate divergence in Fig. 5a is clearly domi-
nated by the fast-spreading rates along the East Pacific ridge and the associated
convergence along the western Pacific plate boundary. The radial plate vorticity
in Fig. 5b is similarly dominated by the strong vorticity along the edges of the
Pacific plate. It is worth noting that the observed strong radial vorticity in zones
of strong divergence or convergence is a striking departure from the simple model
of pure convergence (or divergence) over zones of downwelling (or upwelling) in
a fluid with laterally homogeneous rheology.
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F16. 5. The smoothed horizontal divergence and radial vorticity of the tectonic plate motions given
by the absolute-motion model AMI-2 of Minster and Jordan (1978). The smoothing is performed by
multiplying the harmonic coefficients of the divergence and vorticity fields by the Lanczos smoothing
factor in Eq. (19), with L = M = 32. (a) The divergence field (units 107 rad/yr) is synthesized from
the harmonic coefficients in the range £ = 1-32. (b) The radial vorticity field (units 10-7 rad/yr) is
synthesized from harmonic coefficients in the range € = 2—32.

2.2. Buoyancy-Driven Plate Motions

Theory

The theory of buoyancy-induced plate motions employed by Forte and Peltier
(1991a.,b) is based on the explicit recognition of the limited class of surface plate
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motions that are realizable. We begin our development of this theory by rewriting
expressions (13) and (14) as the following matrix equations:

d=SAw (20)
v = RAw + Now", 20

in which d and » are column vectors consisting of the spherical harmonic coeffi-
cients (V,, - v)7and (7 - V X v)z respectively, S and R are matrices consisting of
the elements (S})7 and (R;})y in (13) and (14), Aw is a column vector consisting of
the Cartesian components of the relative plate rotations w! — oV, N is the matrix
consisting of the elements 8, N7 in (14), and w" is a column vector consisting of
the Cartesian components of the angular velocity of plate N. The matrix S in (20)
may be represented by its Lanczos (1961) decomposition [a useful discussion of
this decomposition, also called a singular-value decomposition, may be found in
AKki and Richards (1980)]:

S=UAYV 22)

in which U and V are orthonormal matrices (U"U =1 =V7V)and A isa diago-
nal matrix consisting of the singular values of S. The columns of V constitute a
subset of the totality of all vectors spanning the space of plate rotation vectors Aw.
If the singular values in A are all nonzero, then the columns of V span the en-
tire space of rotation vectors Aw (i.e., V V7 = I). The columns of U constitute
the particular set of vectors that span all permissible plate-like horizontal diver-
gence fields [it is obvious from Egs. (20) and (22) that any field of plate diver-
gence will be given by a linear superposition of the column vectors in U]. Since
the harmonic coefficients of any realizable plate divergence field must be given
by a linear superposition of the columns of U, we introduce the following projec-
tion operator P:

P=UU, (23)
which acts on any given column vector d, to yield a new column vector d, ,
d, =Pd, (24)

in which the elements of d, constitute the harmonic coefficients of a realizable
field of plate divergence. If the elements of d, already constitute the harmonic
coefficients of a plate-like divergence field, then it is clear that Pd, = d,. Since
the S matrix in (20) is dependent only on the geometry of the plates [see Eq. (15)],
it is clear that the projection operator will also be solely dependent on the plate
geometry.

In practice we inevitably work with truncated sums of harmonic coefficients,
and therefore it is worth understanding the impact of this truncation on the prop-
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erties of the projection operator. From expression (15) we know that all the ele-
ments in any row of the S matrix in (22), which correspond to degree € of the
plate divergence field, are dependent only on the degree € + 2, €, € — 2 coeffi-
cients of the complete harmonic expansion of the plate functions. It is clear from
(22) that this dependence also applies to the matrix U in (23) and therefore an
element P; of the (in practice) finite-dimensional projection matrix P will contain
arepresentation of the degree € + 2, €, € — 2 plate coefficients that is uncorrupted
by the use of the truncated harmonic sum representation of the plates. This repre-
sentation will obviously appear more “plate-like” as the maximum degree € in
the sum is increased. This increased “plateness” is achieved by increasing the col-
umn and row dimension of the projection matrix P while preserving the elements
P; that were already calculated.

Forte and Peltier (1987) have shown that the buoyancy-induced surface flow, in
a model of the mantle that has no lateral viscosity variations, may be uniquely
represented by its horizontal divergence:

R || Dersor ar, (25)

in which (V, - u)7 are the spherical harmonic coefficients of the horizontal diver-
gence of the predicted surface flow, g, is the gravitational acceleration (which is
nearly constant in the mantle), 1, is a reference (scaling value) viscosity for the
mantle, r = a and b are respectively the radii of the solid surface and core—mantle
boundary, 6pp(r) are radially varying spherical harmonic coefficients of the inter-
nal density contrasts, and D,(r) are kernel functions whose behavior also depends
on the radial profile of relative viscosity 1(r)/n, in the mantle. Depending on the
particular field of density perturbations 8 pg assumed for the mantle, the predicted
surface divergence in (25) will generally not be “plate-like.” A plate-like diver-
gence field (V,; - v)! may be obtained from the flow-induced divergence (V- u)y
in (25) by applying the projection operator P described in (23) and (24):

(Vi - V)i = Pouen(Vy - W, (26)

in which the combination sz and €m in P,,, defines a particular row and column,
respectively, of the P matrix. If we now substitute (25) into (26), we obtain

Vv = 2 [ Dnspicn an @7)
Mo Jb
in which
8pi(r) = [D; ' (NPyenDe(N]6p7(r). (28)
The density perturbations 54(r) defined in (28) give rise to a surface divergence
field in (27) that is perfectly plate-like (i.e., corresponds to a plate divergence
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produced by rigid-body rotations of the plates). On the basis of expression (28)
we define a new radially varying projection operator 135,'6,,,(1*):

P on(r) = D7 (F)Pye De(r), (29)

which possesses the fundamental property of all projection operators, namely,
EQ = E (from Eq. (23) we see that P2 = P). The operator E will be uniquely de-
pendent on the geometry of the surface plates and the radial viscosity profile of
the mantle [the latter is implicitly contained in the divergence kernels D,(r) and
D,(r) in (29)].

The projection operator E defined in (29) allows us to partition any given field
of density perturbations p7(r) in the mantle into two orthogonal components
6p.(r) and 6p(r) as follows:

8pL(r) = P.0.(rdpr(r), (30)
8pUr) = [8yem — Poen(NISp2(r), (31)

in which (30) is simply Eq. (28) rewritten and 6, is the Kronecker delta (d,, =
0 when i#jand §,; = 1 when i = j). The density perturbations 8p'(r), delivered
by (30), give rise to realizable surface plate motions, while the density perturba-
tions 8p.(r) cannot give rise to plate motions [note that f’_\.,ye,,,(r) opy(r) = 0].
The mantle flow driven by the density perturbations 6p%(r) should be modeled
with a free-slip surface boundary condition, while the flow driven by the density
perturbations 0pi(r) should be modeled with a no-slip surface boundary condi-
tion. The surface plates are effectively “locked” into their positions by the mantle
flow driven by 8p(r). The density perturbations 6p’(r) constitute that portion of
the internal mantle heterogeneity that is invisible with respect to the observable
plate motions. This last point is clearly important because it shows that the inter-
pretation of past and present plate motions (e.g., Richards and Engebretson, 1992)
in terms of density perturbations in the mantle is entirely nonunique. This non-
uniqueness will be illustrated in several examples below.

On the basis of the plate-like surface divergence driven by the 654(r) compo-
nent of the internal density perturbations, we may determine the corresponding
plate rotation vectors @’ — w". The generalized inverse S' of the matrix S in (22)
is given by

§S=VA'U (32)

From Eq. (20) we see that the action of S* on a column vector d, consisting of the
harmonic coefficients of the plate-like surface divergence in (27), will yield a col-
umn vector Aw':

Aw' = §' d, (33)

in which the elements of Aw" are the relative plate rotations @’ — @” consistent
with the flow-induced surface divergence. It is worth emphasizing that the hori-
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zontal divergence field can only constrain the angular velocity vectors of the plates
relative to that of some arbitrarily selected reference plate (i.e., plate N). If one or
more of the singular values in the diagonal matrix A are zero, then certain com-
binations of plate rotations will produce zero plate divergence. The columns of
the V matrix in (22), which correspond to the zero singular values, define the plate
rotations that produce zero plate divergence. In this situation, the plate rotations
delivered by (33) will obviously describe only the restricted class of plate rota-
tions that produce a nonvanishing plate divergence. If we now insert (33) into (21)
we obtain

v = Cd + No", (34)
in which the coupling matrix
C = RS, (35)

describes the radial vorticity of the plates, which arises from the buoyancy-
induced plate rotations given by Eq. (33). The coupling matrix C in (35) is depen-
dent only on the geometry of the surface plates.

At this juncture it is worth considering the assertion, by Ricard and Vigny
(1989), that a model of buoyancy-induced plate motions cannot describe degree
€ = 1 toroidal motion (i.e., a net lithospheric rotation). The coupling matrix C in
(34) does indeed give rise to a degree € = 1 toroidal motion, on the basis of the
flow-induced plate-like divergence d. This predicted degree 1 toroidal plate mo-
tion is, however, incomplete. A complete specification of the degree 1 toroidal
motion also requires knowing the absolute rotation w" of the Nth plate. This
absolute rotation cannot be determined on the basis of the theory presented here
(see, however, Section 4.7 below).

Examples

We shall now consider several applications of the theory of buoyancy-induced
plate motions described in the previous section. An important ingredient in this
theory is the calculation of the horizontal divergence kernels D,(r) in Eq. (25).
These kernels are a function of the assumed relative viscosity profile n(r)/7, of
the mantle. The surface observable that is most sensitive to the depth variation of
this relative viscosity is the predicted nonhydrostatic geoid. In Fig. 6 (left panel)
we thus show the relative mantle viscosity inferred by Forte et al. (1993b) on the
basis of the fits to the observed nonhydrostatic geoid provided by the seismic
heterogeneity model SH8/WM13 of Woodward et al. (1993). In Fig. 6 (right
panel) we also show the inferred density—velocity proportionality, 9 In p/d In v,
which is employed to convert the dv,/v, heterogeneity in model SH8/WM13 to
an equivalent field of density heterogeneity dp. The divergence kernels D,(r)
which are calculated on the basis of the geoid-inferred viscosity profile are shown
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FIG. 6. In the left panel is shown the relative viscosity profile n(r)/n, inferred from the nonhydro-
static geoid by Forte et al. (1993b). In the right panel is shown the depth-varying proportionality
between density perturbations and shear velocity perturbations in the mantle.

0

500

T
T
S0]

1000

1500

DEPTH [km]

2000 | l=2

2500

3000 | | 1 | 1 | 1
-0.030 -0.015 0.000

AMPLITUDE

FiG. 7. The horizontal divergence kernels D,(r), defined in Eq. (25), calculated for the relative
viscosity profile shown in Fig. 6. The kernels were calculated for a compressible mantle according to
the method described in Forte and Peltier (1991a). The location of the 670-km seismic discontinuity
is indicated by the dashed horizontal line.
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in Fig. 7, where we observe that long-wavelength density heterogeneity near the
bottom of the upper mantle excites surface flow most effectively.

We shall first illustrate the interaction of buoyancy-induced mantle flow with
surface plates by considering the mantle flow driven only by the degree € = 2
density heterogeneity derived from model SH8/WM13 of Woodward et al.
(1993). In Fig. 8a we show the degree 2 surface horizontal divergence that is
predicted for a mantle without surface plates. In this calculation we convolve the
degree 2 divergence kernel in Fig. 7 with the degree 2 density perturbation in the
mantle according to Eq. (25) [in which we select 1, = 102' Pa s (pascal seconds)
on the basis of the postglacial rebound analysis of Peltier (1982, 1989)]. In
Fig. 8b we show the result of the interaction of the flow in Fig. 8a with a hypo-
thetical lithosphere consisting of two hemispherical surface plates whose mutual
boundary coincides with the equator (this geometry was considered previously in
Figs. 1 and 2 and in Eq. (17)). The surface divergence in Fig. 8b was calculated
according to Eq. (27), in which the density perturbations 84!(r) were obtained
using the projection operator [in Eq. (29)] calculated for the two hemispherical
plates. The elements of the projection operator in Eq. (29) were calculated on the
basis of a spherical harmonic description of the plate functions H,(6, ¢) up to
degree and order 32. However, for numerical convenience, we employ only the
elements of the operator ﬁx,,em(r) that correspond to s < 15, € < 15. It is clear,
from the amplitude scale in Fig. 8b, that the projection operator has almost com-
pletely annihilated the internal density perturbation and thus yields a vanishingly
small surface divergence. This example illustrates the importance of the alignment
between the plate-boundary geometry and the geometry of the upwellings and
downwellings in underlying mantle flow. It is rather clear that the symmetry of the
mantle flow in Fig. 8a is such that the hemispherical plates in Fig. 8b will be
essentially “locked” into position. In Fig. 8c we now observe the result of the
interaction of the mantle flow in Fig. 8a with the actual geometry of surface plates
(represented by a spherical harmonic expansion up to degree and order 32). In this
case we observe that the peak amplitude of the surface divergence is similar to the
peak amplitude obtained in the absence of plates (Fig. 8a). The observed surface
plates are apparently aligned favorably with respect to the mantle flow derived
from even the longest wavelength (degree 2) seismic heterogeneity. In Fig. 9 we
show that the surface plate motions in Fig. 8c agree rather well with the observed
plate motions, on horizontal length scales which are much smaller than that of the
internal degree 2 density perturbations.

We shall now consider the interaction of the observed surface plates with the
mantle flow driven by all components (up to degree and order 8) of the mantle
heterogeneity given by model SH8/WM13 of Woodward et al. (1993). The shear
velocity heterogeneity in model SH8/WM13 is converted to density heterogeneity
using the d In p/d In v, values in Fig. 6 (right panel). The resulting field of density
perturbations is partitioned by the plate-projection operator according to (30) and



a  PRED. DV. — NO PLATES (L=2)

b PRED. DV. — 2 PLATES (L=1-15)

F1G. 8. (a) The degree 2 horizontal divergence predicted [according to Eq. (25)] with model SH8/
WM13, using the & In p/8 In v, conversion in Fig. 6 and the divergence kernels in Fig. 4. Units are
10-# rad/yr. (b) The horizontal divergence, in the range € 1—15, due to the interaction of the degree 2
mantle flow in (a) with a lithosphere consisting of two hemispherical plates with their boundary at the
equator. This plate-like divergence field was calculated according to Eq. (27). Units are 1025 rad/yr.
(c) The plate-like horizontal divergence, in the range € = 1-15, due to the interaction of the degree 2
mantle flow in (a) with the actual plates on the Earth’s surface. The units are 10-# rad/yr. In calculating
the flow shown in (a), (b) and (c), a reference viscosity value 17, = 10*' Pa s was employed.
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FiG. 9. (a) The cross-correlation, at each harmonic degree €, between the observed plate divergence
(shown in Fig. 5a) and the degree 2 divergence in Fig. 8a (0, “no plates™), the plate-like divergence
in Fig. 8¢ (O, “with plates”). (b) The rms amplitude, at each degree, of the observed plate diver-
gence (*, “observed”), the degree 2 divergence (O, “no plates™), and the plate-like divergence (O,
“with plates™). Units are rad/yr.

(31) and the plate-like surface divergence is calculated according to (27) (in which
we employ the divergence kernels in Fig. 7). The projection operator is calculated
on the basis of a spherical harmonic description of the plate functions H,(6, ¢) up
to degree and order 32. For numerical convenience, we employ only the elements
of the operator IA’S,,&,,(V) that correspond to s < 15, € < 15. In Fig. 10b we show
the predicted plate-like surface divergence along with the surface divergence of
the observed plate velocities in Fig. 10a. The agreement between the two maps is
clearly very good, and the predicted divergence in Fig. 10b accounts for 70% of
the variance of the observed divergence in Fig. 10a. This good match is achieved
by selecting the value of the reference viscosity in Eq. (27) to be 7, = 10?' Pas.
On the basis of the relative viscosity 7(r)/n, in Fig. 6 (left panel), we thus infer an
absolute viscosity of 10?' Pa s in most of the upper mantle and the absolute vis-
cosity at the top of the lower mantle is 2.0 X 102' Pa s (increasing linearly to a
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Fi. 10. (a, ¢) The horizontal divergence (in the range € = 1-15) and the radial vorticity (in the
range £ = 2—15) of the observed plate velocities. These two fields were previously shown (up to € =
32) in Fig. 5. (b, d) The horizontal divergence (in the range € = 1-15) and the radial vorticity (in the
range £ = 2-15) predicted with model SH8/WM13, using the & In p/8 In v, values in Fig. 6 and the
divergence kernels in Fig. 7. In the calculation of the predicted plate-like surface motions, according
to Egs. (27), (28), and (34), the reference viscosity value 1, = 10' Pa s was employed. In all maps,
the units on the scale bars are rad/(10 Myr).

value of 20.0 X 102" Pa s at 2500-km depth). It is interesting to note that the
inferred value of the upper mantle viscosity and the viscosity at the top of the
lower mantle are fully compatible with the values previously deduced on the basis
of the analysis of postglacial rebound data (Peltier, 1982, 1989).

We may now obtain the buoyancy-induced radial vorticity of the plates from
the predicted surface divergence, in Fig. 10b, by employing the coupling matrix
(calculated to degree and order 15) in Eqgs. (34) and (35). The resulting plate-like
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c  OBSERVED RADIAL VORTICITY (L=2-15)
B e

radial vorticity predictions are shown in Fig. 10d along with the radial vorticity of
the observed plate motions in Fig. 10c. The agreement between the two maps is
fairly good, and the predicted vorticity in Fig. 10d accounts for 38% of the vari-
ance of the observed radial vorticity in Figure 10c. The observed plate motions,
in Figs. 10a and 10c, as well as the elements of the projection operators, in
Egs. (29) and (34), have been smoothed by the Lanczos factors, in Eq. (19) for
which we select the values L = M = 32. In Fig. 11 we provide a detailed degree-
by-degree comparison of the predicted plate-like surface divergence and the ob-
served plate divergence. Here we also compare the predictions obtained for a man-
tle without surface plates, calculated according to Eq. (25) in which n, = 102
Pa s. It is clear from Fig. 11 that the interaction of the long wavelength mantle
flow, driven by the seismically inferred density contrasts, with the surface plates
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FiG. 11. (a) The cross-correlation, at each degree €, between the observed long-wavelength plate di-
vergence (shown in Fig. 10a) and: the buoyancy-induced surface divergence in the absence of surface
plates (O, “no plates”) (calculated with model SH8/WMI13, using 6 In p/é In v, in Fig. 6, and
the divergence kernels in Fig. 7), the predicted plate-like divergence in Fig. 10b (O, “with plates™).
(b) The rms amplitude, at each degree ¢, of the observed long-wavelength plate, divergence (¥, “ob-
served”), of the buoyancy-induced surface divergence in the absence of plates (O, “no plates”), and
of the plate-like surface divergence (O, “with plates™) calculated on the basis of a harmonic expansion
of the plates up to degree 32. The dashed line instead represents the plate-like divergence when the
plate expansion is limited to degree 15. Units are rad/yr.

does indeed yield a predicted surface divergence that agrees closely with the ob-
served plate divergence. In Fig. 12 we also show a degree-by-degree comparison
of the predicted plate-like radial vorticity and the radial vorticity of the observed
plate motions.

A good illustration of the nonuniqueness inherent in the interpretation of sur-
face plate motions was provided in Fig. 8. In Fig. 8b we observed that, despite the
presence of substantial (degree 2) density heterogeneity in the mantle, the result-
ing plate motions were essentially zero. In Fig. 8c we also observed that very long-
wavelength density heterogeneity could produce realistic plate motions on much
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F1G. 12. (a) The cross-correlation, at each degree €, between the observed long-wavelength radial
vorticity of the plate velocities (shown in Fig. 10c) and the predicted plate-like radial vorticity in
Fig. 10d. (b) The rms amplitude, at each degree €, of the observed radial vorticity of the plate velocities
(*, “observed”) and of the predicted plate-like radial vorticity (O, “predicted”) calculated on the basis
of a harmonic expansion of the plates up to degree 32. The dashed line instead represents the plate-
like vorticity when the plate expansion is limited to degree 15. Units are rad/yr.

smaller horizontal-length scales. Such results are, of course, completely different
from those expected for a mantle without surface plates.

A further illustration of the nonunique interpretation of plate motions is pro-
vided by considering two extreme situations in which the density contrasts in the
mantle either exist only beneath the midocean ridges or only beneath subduction
zones. In Fig. 13a we show the model of midocean ridge heterogeneity con-
structed from a spherical harmonic expansion (up to degree and order 32) of the
four major midocean ridge systems. In Fig. 13b we show the model of slab hetero-
geneity constructed by Su and Dziewonski (1992) from a spherical harmonic ex-
pansion (up to degree and order 50) of International Seismological Center-
determined hypocenters in the depth interval 150—250 km. To each model of
density heterogeneity in the mantle, we shall apply the plate-projection operator
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a RDGE MODEL (L=1-32)

+0.8

F1G. 13. (a) A model of midocean ridge heterogeneity (in the degree range € = 1-32) constructed
on the basis of a 5° X 5° discretization of the Earth’s surface. The heterogeneity pattern is defined by
assigning a value of 1 to any 5° X 5° element that coincides with a midocean ridge and a value of 0
elsewhere. (b) A model of subducted slab heterogeneity (in the degree range £ = 1-50) constructed
by Su and Dziewonski (1992) on the basis of a 1° X 1° sampling of the ISC hypocentre locations in
the depth interval 150-250 km. The heterogeneity is defined by assigning a value of 1 to any 1° X 1°
element occupied by an earthquake hypocenter and a value of 0 elsewhere.

[Egs. (29) and (30)] employed previously for the plate-motion predictions in
Figs. 8c and 10b. The mantle viscosity profile we shall employ is again given by
Fig. 6 (left panel), and we choose 1, = 10%' Pa s. The ridge—slab heterogeneity in
Fig. 13 is assumed to extend vertically downward to a depth (chosen arbitrarily)
of 1500 km.

In Fig. 14b we now show the predicted plate divergence for the slab-
heterogeneity model, in which we maximize the least-squares fit to the observed
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plate divergence in Fig. 14a by selecting the optimum density contrast for the
slabs (treating all slabs equally) in Fig. 13b. The density contrast we thus find is
0.10 Mg/m?, and the predicted divergence field in Fig. 14b accounts for 62% of
the variance in the observed divergence field in Fig. 14a. It is rather evident from
these two figures that the slab-heterogeneity model by itself substantially under-
predicts the rate of plate divergence along the East Pacific rise.

In Fig. 14c we show the plate divergence predicted for the ridge-heterogeneity
model, in which we again maximize the least-squares fit to the observed plate
divergence by assigning optimal density contrasts to each of the four ridges in
Fig. 13a. The density contrasts so obtained are —0.010 Mg/m? for the North
Atlantic ridge heterogeneity, —0.011 Mg/m?* for the South Atlantic ridge,
—0.020 Mg/m? for the Southeast Indian ridge, and —0.032 Mg/m? for the East
Pacific ridge. The predicted divergence field in Fig. 14c accounts for 77% of the
variance of the observed field in Fig. 14a. It is noteworthy that the ridge hetero-
geneity model predicts a realistic pattern of convergence in the west Pacific trench
system, and in the Peru—Chile trench system, with an amplitude that is about 60%
of that observed in Fig. 14a. A naive interpretation of these simulated trench con-
vergence rates may lead to the conclusion that considerable subducted slab hetero-
geneity exists in the mantle when, in fact, there is none in this idealized mantle-
heterogeneity model.

Finally in Fig. 14d we show the plate divergence predicted for a combined slab—
ridge-heterogeneity model, in which we maximize the fit to the observed diver-
gence by selecting optimal density contrasts for the slabs and ridges in Fig. 13. In
this case we infer a slab density contrast of 0.063 Mg/m?, a North Atlantic ridge
contrast of —0.004 Mg/m?, a South Atlantic ridge contrast of —0.006 Mg/m?, a
Southeast Indian ridge contrast of —0.012 Mg/m?, and an East-Pacific ridge con-
trast of —0.024 Mg/m?. It is interesting that the inferred slab density contrast
agrees closely with that independently inferred by Hager and O’Connell (1981)
and by Hager and Richards (1989) in separate analyses of plate motions and the
geoid. The predicted divergence field in Fig. 14d now accounts for 92% of the
variance of the observed field in Fig. 14a. This analysis strongly suggests that both
the positive density heterogeneity beneath trenches and the negative density het-
erogeneity beneath ridges contribute significantly to the observed motion of the
plates. The ridges therefore appear to be active regions of forcing.

2.3. An Assessment

The cornerstone of previously published treatments of buoyancy-induced plate
motions (e.g., Hager and O’Connell, 1981; Ricard and Vigny, 1989; Gable et al.,
1991; Forte and Peltier, 1991a,b), including that presented above, is the assump-
tion that the long-term behavior of tectonic plates is that of rigid bodies. Although
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a  HORIZONTAL DIVERGENCE (L=1-15)

b PRED. DV. — SLABS ONLY (L=1-15)
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FIG. 14. (a) The observed long-wavelength plate divergence in the degree range £ = 1-15. (b) The
plate-like divergence (in the range € = 1-15) predicted with a best-fitting model of subducted slab
heterogeneity (see text for details). (c) The plate-like divergence predicted with a best-fitting model of
midocean ridge heterogeneity (see text for details). (d) The plate-like divergence predicted with a best-
fitting model of combined slab and ridge heterogeneity. In all predictions the divergence kernels in
Fig. 7 are employed and the reference viscosity value is n, = 10?' Pa s. The units on all scale bars are
rad/(10 Myr).

this assumption appears to simplify matters, so that the motion of each plate may
be specified with only three parameters (the components of its angular-velocity
vector), it can also lead to serious inconsistencies when matching the plate mo-
tions to the buoyancy-driven flow in the mantle. A precise mathematical descrip-
tion of large-scale flow in a spherically symmetric mantle may be achieved with a
limited number of spherical harmonic basis functions, whereas an infinite number
of harmonics are required for a precise mathematical description of rigid plate
motion. This distinction presents obvious difficulties when modeling plate mo-
tions in the spectral domain.
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FiG. 14. Continued.

These difficulties are clearly manifested in the spectral-domain treatment of
plate motions by Hager and O’Connell (1981). Their treatment in essence consists
of two separate calculations: (1) plate velocities are imposed at the surface and
the surface-shear-driven flow in the mantle is calculated, and (2) the assumed
density perturbations in the mantle excite a flow that is calculated with a no-slip
surface boundary condition. Dynamical consistency is assumed if the surface
shear stresses, generated in (1), balance the buoyancy-induced surface shear
stresses generated in (2). Problems arise because the surface shear stresses in (1)
become unbounded as the number of terms retained in the harmonic description
of the plates increases indefinitely (see Fig. 3 in Hager and O’Connell, 1981).
Infinitely large stresses are required to move a surface layer composed of perfectly
rigid contiguous plates. Such infinite stresses cannot be matched to the surface
stresses in (2), which always remain finite. Hager and O’Connell (1981) suggest
that this inconsistency is resolved by simply postulating that the lithosphere fails
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at some critical yield stress. This failure criterion is used, however, only in a sepa-
rate evaluation of net force exerted on the plates. The impact of this failure on the
underlying mantle flow is never determined.

The treatment of plate motions by Ricard and Vigny (1989) is also formulated
in the spectral domain and is a modification of the two-step approach proposed by
Hager and O’Connell (1981). Ricard and Vigny solve for the set of plate angular-
velocity vectors that provide a balance between the surface stresses generated by
the plate-driven mantle flow and by the buoyancy-driven flow acting on a no-slip
surface boundary. The key assumption employed in this balancing of stresses, is
that the forces acting on the plate boundaries are presumed to be identically zero.
This assumption is clearly at odds, however, with the actual state of stress at the
surface. The surface stresses generated by the plate-driven mantle flow must again
become infinite as the number of harmonics that describe the plates increase
indefinitely.

The generation of unbounded surface stresses is the inevitable consequence of
a procedure that models the mantle flow driven by prescribed plate velocities. To
avoid this difficulty we proposed the alternative treatment described in Section
2.2. In this treatment the observable plate motions are generated by the subset of
internal buoyancy sources, described in Eq. (30), which interact with a free-slip
(i.e., zero-stress) surface. The only surface stresses that are generated are those
due to the buoyancy sources in Eq. (31), which interact with a no-slip surface.
These surface stresses always remain finite. It is important to appreciate, however,
that the fraction of internal buoyancy sources that generates the plate motions
becomes increasingly smaller as the number of harmonics used to describe the
plates increases. This is understood by noting that the buoyancy sources that pro-
duce observable plate motions must be located in the vicinity of the plate bounda-
ries. As these boundaries become narrower (with the increasing resolution of the
plates themselves), so does the distribution of effective buoyancy sources. In the
limit in which the plate boundaries are infinitely narrow, the plate-driving buoy-
ancy sources in Eq. (30) vanish entirely. This limit is achieved when the number
of harmonics used to describe the plates is infinite.

We can illustrate this important point by calculating the plate-projection opera-
tor, in Eq. (29), using a spherical harmonic expression of the plates that is limited
to degree 15. This limited representation is less plate-like, and characterized by
effectively wider plate boundaries, than is a plate representation that includes
harmonics up to degree 32 (as in Figs. 5 and 10). We therefore expect that the
buoyancy-induced surface motions will possess significantly greater amplitudes.
This is confirmed in Figs. 11 and 12, in which the dashed lines represent the rms
amplitude of the surface divergence and vorticity predicted on the basis of a har-
monic expansion of the plates that is limited to degree 15.

The maximum degree to be retained in a spherical harmonic expansion of the
plates depends on the actual rigidity of the tectonic plates. Real plate boundaries
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must have a finite region of weakness, or else they could not accommodate the
deformations arising from their relative motions. This region of weakness along
the edges of the plates may be simulated by truncating the spherical harmonic
expansion of the plates. The effective width of the region of weakness, in a har-
monic expansion limited to degree 32, is shown by the width of nonzero diver-
gence rates in Fig. 5a. The choice of maximum harmonic degree is, of course,
arbitrary, unless we have a priori data concerning the mechanical strength of plate
boundaries. Such data would permit the determination of the actual lateral varia-
tions of rheology in the lithosphere.

3. LATERAL VISCOSITY VARIATIONS IN THE LITHOSPHERE

The technique for calculating surface plate motions, described in Section 2, is
evidently rather convenient as it allows us to avoid dealing explicitly with the
lateral variations of effective viscosity that characterize the plate-like structure of
the lithosphere. This technique is, however, essentially kinematic because the
plates are introduced only as a surface boundary constraint on the permitted sur-
face flows. The dynamical details of the flow processes in the lithosphere that
mediate the coupling of the surface poloidal and toroidal motions is never deter-
mined and remains unknown. A dynamically consistent treatment of the litho-
sphere requires that we return to the original problem of explicitly treating the
effects of lateral variations of effective viscosity in the lithosphere. In this section
we shall directly show that the observed toroidal plate motions, and their coupling
to poloidal motions, may be understood to first order in terms of plausible lateral
variations of viscosity in the lithosphere itself.

The term viscosity, when applied to the lithosphere (or the mantle), must be
understood in the context of a steady-state rheology of a creeping polycrystalline
solid. As discussed in the Introduction (Section 1), the steady-state creep of any
crystalline material may be characterized in terms of an effective viscosity. This
concept of effective viscosity also applies to highly nonlinear materials character-
ized by stress- or strain-induced softening [see Eq. (3)]. The lateral variations of
viscosity in the lithosphere, which will be investigated in this section, should
therefore be regarded as an effective physical representation of a possibly non-
linear rheology.

3.1. Theory

The equation of momentum conservation governing quasistatic flow in a con-
tinuum with heterogeneous viscosity is given by Eq. (IV.9) in Appendix IV. The
coupled scalar expressions that describe the buoyancy-induced poloidal and toroi-
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dal flows in such a medium are given by Egs. (IV.10) and (IV.11). An inspection
of these equations immediately reveals that a direct solution, for an arbitrary field
of viscosity variations, will be rather difficult. This difficulty might reasonably be
circumvented, in the case of the Earth’s mantle, by initially assuming that the
lateral variations of effective viscosity in the lithosphere are much stronger than
in the underlying mantle. To the extent that this assumption is reasonable we may
then treat the sublithospheric mantle as a region in which the lateral variations of
viscosity may be ignored. As we show below, this assumption allows us to effec-
tively replace the direct solution of Eq. (IV.9) by an equivalent treatment based on
the matching of stresses at the two bounding surfaces that define the lithospheric
layer. Since the thickness of the Earth’s lithosphere (=100 km) is much less than
the radius of the solid upper surface (r = 6368 km), we may employ a locally
valid Taylor expansion for the lithospheric flow field.

By virtue of the tangent-vector theorem (Backus, 1967) we may write the hori-
zontal component of the lithospheric flow u,, in the form

u,(r, 6, ¢) 1

r a

[V.V(r, 6, ¢) + AW(r, 6, &)]. (36)

If we expand the scalars V and W as a Taylor series in r and retain the lowest-
order terms, we obtain

V(r, 6, ¢) = Vo(6, $) + % Vi, ¢) + (iiai) Vi, ¢),  (37)

Wr, 0, ¢) = Wyld, ) + % wo, 6 + 2L w6, @8

a2

where r = a (= 6368 km) is the radius of the solid outer surface. The application
of the free-slip (zero tangential stress) boundary condition at the outer surface

d
_[E] =0, (39)
ar| r |,_,

Vi6, &) = Wi(6, ¢) = 0. (40)

implies that

The radial component u,(r, 6, ¢) of the lithospheric flow may be determined from
the equation of mass conservation V - u = 0 for an incompressible lithosphere:

1
== ru ==V, - u, 1)
r r

By substituting Eq. (36) into (41), employing results (37), (38), and (40), and
finally integrating with respect to radius, we obtain
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3 3 — 3
aitr B, ¢y = | 2l ey 5 =T
3ar? 6a’r? (42)
" [2+r(a—r)+(a—r)2:|A2V
2 10

In obtaining (42) we have also made use of the condition of zero radial velocity,
u(r = a, 6, ¢) = 0, at the upper bounding surface.

The scalars V, and W, in Egs. (37) and (38) may be directly constrained by the
observed tectonic plate velocities v(6, ¢). Indeed it is straightforward to verify,
using (36)—(38), that

v, ¢) = V. Vo(0, ¢) + AW(0, ¢). (43)

The scalars V, and W, in Egs. (37) and (38) may be related to the known scalars
V, and W, in (43) by substituting expressions (36) and (42) into Eqs. (IV.9) and
(IV.10) and “solving” for V, and W,. Apart from the ensuing mathematical diffi-
culties, such an approach requires that we already know the lateral variations of
effective viscosity of the lithosphere. Unfortunately we do not possess, a priori, a
sufficiently complete or realistic description of the rheology of the lithosphere.
Another method for determining the values of V, and W, involves matching the
buoyancy-induced normal stress from the mantle flow to the normal stresses gen-
erated by the lithospheric flow field in Egs. (36) and (42). This method, quite apart
from requiring a knowledge of the buoyancy forces in the mantle itself, again
requires that we know the lateral variations of viscosity in the lithosphere. This is
unsatisfactory because we wish to discover the nature of these lateral variations in
the first place. ‘

To overcome these difficulties we shall make the following simplifying
“quasirigid lithosphere” approximation:

uy(r =1, 0,d) = cuylr =a 0, ¢) (44)

in which r = r, is the radius defining the lower bounding surface of the lithosphere
and c is some as yet undetermined constant. By invoking (44) we are in effect
assuming that the tangential flow velocities at the base of the lithosphere are par-
allel to those at the surface; hence the term quasirigid. Equation (44) implies that

Va0, ¢) = KVo(0, )  and  Wi(0, ) = KWo(0, ¢),  (45)

in which K is a constant. We again.emphasize that the quasirigid assumption, and
the consequent appearance of the scalar K in Eq. (45), is introduced because of
our lack of knowledge concerning the lateral variations of effective viscosity in
the lithosphere. The ultimate validity of the approximation in Eq. (45) may be
judged by the inferences of these lateral viscosity variations, presented in Section
3.3 below.
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We may attempt to estimate the magnitude of the constant K by matching the
dynamic surface topography, expected on the basis of the lithospheric flow in (36)
and (42), with the dynamic surface topography estimated by isostatic reduction
(Forte et al., 1993a) of the observed topography. From Eq. (A18) in Forte and
Peltier (1987) we have

(ba)r =

I @[_ & e+ D d

7 (), 46
e | - dr],_,, pe(r) (46)

in which (6 @)y is the spherical harmonic coefficient of the dynamic surface topog-
raphy, Ap,,, is the density jump across the lithosphere—ocean boundary, and py(r)
is the poloidal generating scalar that describes the lithospheric flow field. The
radial velocity in (42) is directly related to the poloidal-flow scalar by u, = A?p/r
and therefore

p(r, 6, ¢) = {(L - r3> TS il 2l
3ar 6a’r (47)

R ra —r) (a — r)?
X (r + 5 + 10 )}VO(B, b).

The scalar V,(0, ¢) may be related to the surface horizontal divergence of the
lithospheric flow field and, on the basis of Eq. (43), we have

Vy-v=—V,. (48)
a

We similarly have the following relationship between the scalar W,(6, ¢) and the
radial vorticity of the lithospheric flow field:

AZ
PV X V= — W, (49)
a

Combining expressions (47) and (48) with Eq. (46) we finally obtain

Apmagoﬁa? — [3 _ (2 + K)

" e+ 1)}(V” "R =0

The isostatically reduced surface topography (Forte et al., 1993a) is most
strongly correlated with the observed plate divergence at harmonic degrees 3 and
4. The rms amplitude of the isostatically reduced surface topography, at degrees
€ = 3 and 4, is respectively 0.3 and 0.5 km. The rms amplitude of the horizontal
divergence of the observed plate velocities, at degrees € = 3 and 4, is respectively
0.46 X 107 and 0.86 X 108 rad/yr. We find that Eq. (50) may be satisfied at
degrees 3 and 4 by the following selection of K and 7, values:
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K=0->m =15 X 10? Pa s

K= -20->7,~= 10 X 10* Pa s 51
K= —-40 5> n, =8 X 10? Pa s

K= —-60—>mn,~6 X 10 Pas

We have obviously not presented a complete list of (K, 17,) values in (51), but it is
nonetheless clear that a large range of K values corresponds to a much smaller
variation of 1, values. We do not possess reliable estimates of the absolute, spheri-
cally averaged, effective viscosity of the lithosphere and, given the very rough
approximation represented by Eq. (50), we cannot use (51) to reliably distinguish
which K value is most appropriate. We defer the selection of appropriate K values
to Section 3.3 below.

The locally valid expression which describes the lithospheric flow is thus ob-
tained by combining Eqgs. (36)—(38), (40), (42), and (45) to obtain

a7 (a — r)? 5 ra — r) (a — r)?
u(r, 6, ¢) = r|: 3ar? + K 6 (r + > + 0 >]

(r — a)?

x A2V, + -1+ K
a 2a?

>[V1V() + AW,].
(52)

We may now consider how expression (52) may ultimately be employed, in con-
junction with the condition of stress continuity across the lithosphere—mantle
boundary, to constrain the possible lateral variations of the effective viscosity in
the lithosphere.

As shown in Appendix V [Eq. (V.9)], the continuity of horizontal stress across
the lithosphere—mantle interface implies that

Jd{u Jdfu
7.(0, ¢)|:Vﬂur +r 8_1’<7H>} = 77M|:VHMr +r (,;(7[’)] , (53)

in which 7,(8, ¢) is the field of lateral viscosity variations in the lithosphere and
My 18 the viscosity of the sublithospheric mantle, which is assumed to be spheri-
cally symmetric. We shall find it advantageous to consider the toroidal component
of the horizontal stress matching, obtained by applying the operator A - to both
sides of (53):

ad A -
ar\ r - ar\_r it
d (A - uy
=yl r—|— . (54
or r pri




36 ALESSANDRO M. FORTE AND W. RICHARD PELTIER

In Eq. (54) we now substitute the lithospheric flow field given by Eq. (52) and,
after some manipulation, obtain

eAv, - [V,(A2 — K)V, — KAW,] — &(l + v,)KA2W,

_ | 9 (Ng
" o [a( r >] )

in which & = h/a, where 4 is the thickness of the lithosphere, (7,) is the average
lithospheric viscosity and is given by the € = 0, m = 0 coefficient of the spherical
harmonic decomposition of 7,(8, ¢), v.(6, ¢) is the dimensionless departure of
the lithospheric viscosity from its average value defined according to

n.(0, @) = Ml + v.(0, P)], (56)

and q(r, 6, ¢) is the scalar field defining the sublithospheric toroidal flow as
follows:

uu(r, 0, @) = Aq(r, 0, ¢). (57

In the derivation of Eq. (55) we have neglected all terms of order &2 and smaller.
The quantity ev, = e(n,/(n,) — 1) is analogous to the “stiffness” parameter
employed by Ribe (1992). The term A2V, that appears on the left-hand side of
Eq. (55) arises from radial velocity u, in the lithosphere, given by expression (52).
This term is clearly not negligible and indeed becomes increasingly dominant with
decreasing horizontal wavelength (i.e., as the spherical harmonic degree € in-
creases). We emphasize this point because the treatment of lithosphere—mantle
coupling by Ricard et al. (1988), employed again in Ricard ez al. (1991), assumes
that the contribution to the horizontal stress by u, is negligible. Equation (55)
demonstrates that this assumption is not valid.

The mathematical advantage of assuming a spherically symmetric viscosity in
the sublithospheric mantle is most apparent when treating the dynamics of toroidal
flow in this region. Indeed, if we assume for simplicity that the mantle consists of
two constant viscosity layers (e.g., the upper and lower mantle) the equation gov-
erning the toroidal flow in each layer is, according to Eq. (IV.11) in Appendix IV

VA% = 0, ' (58)

in which we have employed Eq. (57). This simple equation demonstrates that there
are no internal sources of toroidal flow in a medium with spherically symmetric
viscosity. The toroidal flow in the mantle will therefore be identically zero (except
at degree € = 1; see below) unless there are inhomogeneous boundary conditions.
In Eq. (55) we have an important example of such an inhomogeneous boundary
condition. Here we observe that the presence of a lithosphere with lateral viscosity
variations gives rise to horizontal shear stresses that drive toroidal flow in the
sublithospheric mantle.
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The solution to Eq. (58) is readily obtained if we expand ¢(r, 6, ¢) in terms of
spherical harmonic basis functions. We thus find that the spherical harmonic co-
efficients g7 (r) satisfy the following equation:

& 2d €+ 1
[— + 5= - —(———)]qgn(r) = §, (59)

dr? rdr r?

The solution of Eq. (59) is of the form

m

Fy
’
r€+|

qe(r) = Epre + (60)

in which the constants Ey and F7 are determined by the boundary conditions in
our problem. In our simplified mantle, consisting of two constant-viscosity layers,
the boundary condition at the core—mantle boundary r = b is

dfaqr
— £ =0, 61
d}’( r)r—b ( )

valid for a free-slip boundary. At r = d, the surface that defines the horizon be-
tween the two mantle layers, we have the following boundary conditions that ex-
press the continuity of velocity and stress:

qé(r =d*) = qi(r = d7), (62)

dfqr dfqr
=qn_. —|— s 63
dr< r) -~ n dr< r>,d ©3)

in which i, [= n, in Egs. (5§3)—(55)] is the upper-layer viscosity and 7_ is the
lower-layer viscosity. Equation (55) provides the remaining boundary condition

dr r r=rp 77M rie(‘e e 1)

in which T is the spherical harmonic coefficient in the harmonic expansion of
the left-hand side of Eq. (55):

1
e = ijZ'*{SAVL C[ViA* = KV, — KAW,]

— &(1 + v)KAN>W,}sin 6 dO do. (65)

The normalization convention we employ for the Yy throughout this chapter is
given by Eq. (IL.3) in Appendix II. We shall omit the algebraic details involved in
determining the constants E7, Fy that satisfy conditions (61)—(64) and simply
point out that the values of (E, )y and (F, )7, which define the toroidal flow in the
upper layer of the mantle, are given by
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+ ) e ri€€ + D — 1) [Be — (£ + 2)(d/r ) Y'Al]
m o= _@ Ty dHIA,
(Foe = e ri€ + 1) [B, — (€ + 2)(d/r)* A 67)
where
A= (1 = p + by S 4y -
t €+ 2

Be=®+2)+y€ — 1) + (€ — )(b/APHA — y), (69)

in which y = n_/7. . Employing expressions (66) and (67) we then find that value
of the toroidal-flow scalar, immediately below the lithosphere—mantle interface,
is given by

_ ) Ty [B + (€ — 1)(d/r,)**'A,]
e €€+ D€ — D) [Be — (€ + 2(d/r) A

qé(re) = (70)
It is straightforward to show, on the basis of expressions (68) and (69), that
when the viscosity of the lower layer is much greater than that of the upper layer
(y >> 1), Eq. (70) reduces to the following expression:

M) = _@ Iy [1 — (d/r.)***"] a1
e n €€+ 1) [(€ — 1) + (€ + 2)(d/r)>* "]

Equation (71) will be exactly true for a perfectly rigid lower mantle, which thus
appears as a no-slip lower boundary (except at € = 1; see below) for the upper-
layer toroidal flow.

The requirement that tangential shear stresses be finite at the lithosphere—
mantle interface implies that the tangential flow velocity must be continuous and
therefore

(A : uH)r:rZ = (A . uH)r=r[ . (72)

If we now substitute Egs. (52) and (57) into Eq. (72) and expand the flow scalars
in terms of their spherical harmonic coefficients, we then obtain

(I = e)(Woe = qe(ri), (73)

in which ¢ is the dimensionless thickness of the lithosphere, introduced in
Eq. (55). All terms of order €2 and smaller have been omitted from the left-hand
side of Eq. (73). For ¢ << 1 we may also safely ignore the term containing & in
(73). Combining Egs. (70) and (73) we thus obtain
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(B = (€ + Dy Ad (o () 1 o

—HEH DE - D e - Damyead iz

It is clear from the defining equation [Eq. (65)] for Ty that Eq. (74) describes the
coupling that must exist, as a consequence of lateral viscosity variations in the
lithosphere, between the toroidal and poloidal components of lithospheric flow.
This coupling was obtained on the basis of the continuity of horizontal stress and
horizontal velocity at the lithosphere—mantle boundary.

3.2. Net Rotations in the Lithosphere and Mantle

The matching of stresses and velocities at the lithosphere—mantle interface mer-
its additional consideration when dealing with the degree € = 1 component of
toroidal flow in the mantle. The toroidal-flow scalar in the upper and lower mantle
layers is given by the expression (60). At € = 1 the free-slip condition at the core—
mantle boundary (CMB), given by Eq. (61), implies that F* = 0 in the lower layer
and thus ¢7'(r) = Eprin the lower layer. In the upper layer Eq. (60) applies again
and, owing to the matching conditions (62) and (63), we again have g7*(r) = E¥'r.
The degree 1 toroidal flow field throughout the mantle is thus given by the follow-
ing simple expression:

+1

Valr, 0, 8). = A D, rEPY0, ). (75)

m=—1

In Egs. (5) and (10) we previously showed that a rigid-body rotation may be ex-
pressed as '

Vrigid(r, 09 d)) = w >< r = _A Q’ (76)

where
r
Q - % [(_wx + Lwy)Yl(a’ ¢) + \/iwzyl(a’ ¢)

+ (o, + tw)YTN(O, §)] (T7)

is derived in Appendix III. The vectorw = w,f + w,j + w k describes the angular
velocity of the rigid-body rotation. A comparison of Eq. (75) and Egs. (76) and
(77) shows that the € = 1 toroidal flow is a rigid-body rotation of the entire man-
tle. The components of the angular velocity vector that describe this rotation are
given by

o, = V6Re[El], o, = —V6Im[E}], o, = —V/3ES. (78)
The rigid-body rotation described by Eq. (75) was derived by assuming that the
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viscosity in the mantle is spherically symmetric. This motion does not produce
any tangential stresses, either within the mantle or at the bounding surfaces. An
arbitrary rigid-body rotation of a fluid shell, with free-slip boundaries and spheri-
cally symmetric viscosity, is always a possible mode of “flow.” We may eliminate
this rigid-body motion by transferring to a frame of reference rotating with angu-
lar velocity (78) relative to the original frame. Since flow in an infinite Prandt]
number fluid (like the mantle) is not influenced by inertial forces, this new frame
of reference is dynamically equivalent to the original frame.

Arbitrary rigid-body rotation is a degenerate solution of the viscous flow equa-
tions in a spherically symmetric mantle. This degeneracy is eliminated by intro-
ducing lateral viscosity variations, in which case the degree € = 1 toroidal flow
will not possess the simple linear dependence on radius in Eq. (75). The € = 1
toroidal flow field will in general be described by v,,, = AX,,En(r)Y7(0, ¢b), and
thus each infinitesimally thick spherical shell at radius 7 in the mantle will rotate
with a different angular velocity given by

V6
@r) = —= Re[Ei(n)],

V6 V3
w(r) = ———Im[EI(N], @)= —— E{n. (79)

The differential mantle rotation due to lateral viscosity variations has recently
been invoked as an explanation for the net rotation of the lithosphere in absolute-
motion plate models based on the hotspot frame of reference (Ricard ef al., 1991;
O’Connell et al., 1991). The hotspot tracks on the Pacific plate are assumed to
arise from a net rotation of the lithosphere relative to the underlying mantle in
which the hotspots are presumably “anchored.” The analysis by Ricard et al.
(1991) is based on their use of the following expression for the horizontal shear
exerted across the lithospheric layer

Vu(r = a) — vy(r = r) = h{n "y, (80)

in which v,(r = a) is the horizontal flow velocity at the Earth’s solid surface,
vuy(r = r.) is the horizontal flow velocity at the lithosphere—mantle interface,
h = a — r, is the thickness of the lithospheric layer, (n~') is the depth average
of the laterally varying reciprocal viscosity in the lithospheric layer, and t, is
the horizontal shear stress acting at the solid surface. The lithospheric layer con-
taining the lateral viscosity variations is assumed to be 100 km thick in Ricard
etal (1991).

Equation (80) is based on the following general expression for the tangential
flow-induced stress [see Eq. (V.7) in Appendix V]:

t, = n[VHu, + 3 (ﬁ)} 1)
or \ r
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It is clear from a comparison of Egs. (80) and (81) that Ricard et al. assume that
the horizontal gradient of radial velocity u, is negligible compared to the radial
gradient of horizontal velocity. The significant error arising from this assumption
was previously pointed out in the discussion immediately following Eq. (57). It is
also clear that Ricard et al. assume, apparently without justification, that the
condition
Ny, M (82)
ar r
obtains throughout the lithospheric layer.

The greatest problem posed by the differential rotation analysis of Ricard et al.
(1991) arises from their assumption of a nonvanishing tangential stress t, at the
solid surface. The existence of such a stress arises from the fact that Ricard et al.
assume that the lithospheric plate velocities are simply imposed as a boundary
condition. Clearly, the imposed plate motions are maintained against viscous dis-
sipation by externally applied horizontal stresses. This flow calculation is physi-
cally unrealistic. In reality there are no imposed external stresses, and the plate
motions must arise from internal flow driven by buoyancy forces. Since there can
be no external stresses driving the plates, the boundary condition that must be
employed with observable plate motions is clearly free-slip and therefore

Jd (uy
t,(r =a) =0= — (——) = 0. (83)
oar \ r /.,

It is evident, on the basis of Eq. (83), that the assumption in Eq. (82) is not valid.
The application of Eq. (83) to the near-surface net rotation @(r) X r implies that

do(r))
(—dr > = 0. (84)

Equation (84) shows that the differential rotation across a thin lithospheric layer
is entirely negligible. In other words, the observed net rotation of the lithosphere
will be nearly identical to that at the top of the mantle. Finite differential rotation
between the surface and the deep mantle requires that the depth interval in which
lateral viscosity variations occur be considerably in excess of the thickness of the
lithosphere. Such a differential rotation cannot be described by the theory de-
scribed in this section; it requires a theory that treats the effects of lateral viscosity
variations throughout the mantle (see Section 4 below).

3.3. Inverting for Lateral Viscosity Variations

We now show that the definition (56) of the normalized viscosity perturbations
implies that

vi(6, ¢) = O(). (85)
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The actual viscosity 1,(6, ¢) must be positive and therefore v, (6, ¢) > — 1. Since
the horizontal average of v, (6, ¢) is, by definition, equal to zero, the maximum
positive values of v,(0, ¢) will in general be of order unity. We may illustrate this
point by considering the lithosphere. The plate boundaries may be imagined to be
very weak and thus v,(0, ¢) = — 1 over the small surface area occupied by plate
boundaries. The value of v,(6, ¢) must therefore be less than +1 in the plate
interiors to ensure that the horizontal average of v, (6, ¢) is identically zero.

The coefficient of the term (W,)7 on the left-hand side of Eq. (74) is O(1), and
therefore, from the definition of T% in Eq. (65) and from Eq. (85) we must have

()
Mm

e = 0(1), (86)

to ensure that both sides of Eq. (74) are balanced. The viscous coupling and gen-
eration of toroidal flow in the mantle by lateral viscosity variations in the litho-
sphere thus implies, according to Eq. (86), that the thickness € of the lithosphere
trades off inversely with its relative “stiffness” (n,)/n,.

We will find it useful to rewrite Egs. (74) and (65) as

[Be — (€ + 2)(d/r)*"'Ad nu
+ K
[Be + (€ = 1)(d/r)**'Ad (n.)e

X (Woe = Qe, (87)

-6 + l){(f -1

where
or = Jj Yir{Av, - [V{(A2 — K)V, — KAW,] — v, KA*W,}

X sin 0 d6 dp. (88)

Prior to obtaining an explicit expression for Q7 in terms of the spherical harmonic
coefficients of v,, V,, and W, we point out that for a general field (0, ¢) =
3. frY7 the following identities hold:

Af(0, ¢) = Eb[\/— ag'\fe=' + éomfy — \6/5 ag"” 'f”’“]Y%”(ﬁ, é), (89)

&m

V. f@, ¢) = 2|:e2] (feo' (1 — 8e)€ — Depz! + fea' (€ + 2)ce™)

&m

- éo(f?"—l(l - 6«())(€ Dby, — f?"ﬂ(g + 2)b@")

* \e/lg (ferl(l = Se)(€ — D!

+ feil€ + 2)cr ]Yz*(ﬁ, ?),
(90)
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in which ¢« = \/ — 1. Equations (89)-(90) follow from Egs. (1.8) and (I.12) in
Appendix I. Expanding all quantities in (88) in terms of spherical harmonics, i.e.,

v, = eE(mz"Yz’, Vo = 2 (Vo)eYe, W, = > (Wo)eY,
m €,m

€m

and employing results (§9)—(90), we may obtain (algebraic details omitted here)
the following:

or =3 (VL);{ > [’}; v ’1(1{ a = (W)

n=[€—ul E u n
F AV = D+ KIO = B,0)(n — ety
+ (Vi + D+ 2) + Kln + el
+ [’g ’ {J(K VW + wi(Veal(n = D + K]
X (1= 8,00 = Dbl = (V)lul(n + 1)(n + 2) + K]

. , a;’lm v—1 k
X (n + 2)bi] + Kn(n + 1)(Wy)4) + 3 [f y n]

X (Kat "(Wo)s™' — [(Vo)i=il(n — Dn + K]
X (1 = 8,0)(n — et~} + (Vo)izil(n + 1)

X (n+2) + K](n + 2)c,,k])},
oD

wheret =V —-1,i= -(m+v+1),j= -(m+v), k= —(m+v—1),and
the 2 X 3 arrays enclosed in square brackets are the spherical harmonic coupling
coefficients defined in Eq. (II.1) of Appendix II. The algorithm we employ to
evaluate these coefficients is also described in Appendix II. The asterisk over Qy
in Eq. (91) denotes complex conjugation.

Equations (87) and (91) provide an explicit description of the coupling between
poloidal and toroidal lithospheric flow due to lateral viscosity variations. In par-
ticular the selection rule (I1.8) in Appendix Il implies that the degree s components

of the lateral viscosity variations will couple the degree [€ — s|, [€ — 5| + 2,
|€ —s|+4,...,€+ s — 2,€+ s components of the toroidal lithospheric flow
and the degree [€ — s| — 1,]€ — s|+ 1,[€ —s|+3,..., € +s—1,€+s+1

components of the poloidal lithospheric flow to the degree € toroidal flow in the
lithosphere and underlying mantle.

Equation (87) constitutes a system of linear equations that may be rewritten as
the following matrix equation:

w = My, 92)
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in which w is a vector consisting of the complex conjugate of the left-hand side of
(87) arranged in order of increasing €,m, v is a vector consisting of the spherical
harmonic coefficients (v,);, arranged in order of increasing u,v, and M is a matrix
consisting of the terms enclosed in curly brackets in Eq. (91). If we require that
the lithospheric flow field correspond to the observed plate velocities, then the
vector w and matrix M are known, and Eq. (92) may be inverted to determine the
lateral viscosity variations that are consistent with the observed plate motions.
According to Egs. (48) and (49), we have

a

Ve = W+ ) (Vy - v, ©3)
a ~

(Wor = —m(r -V X v,

in which (V,, - v)z and (7 - V X v)7 are respectively the spherical harmonic coef-
ficients of the horizontal divergence and radial vorticity of the observed tectonic
plate velocities.

The interpretation of the lateral viscosity variations yielded by an inversion of
(92) will be facilitated by considering a useful approximation to the left-hand side
of Eq. (87). As pointed out above, in the derivation of Eq. (71), if the viscosity
jump in the two-layer parameterization of mantle viscosity is sufficiently large
(i.e., v = 10), then the left-hand side of (87) simplifies to

[(€ — 1) + €+ 2)(d/r)**'] ny
(1 = (d/r)*+'] (e
We may further simplify this expression for the case d = r,. Writing d = r, (1 — §),

where 6 is assumed to be small, we then obtain the following approximation to
Eq. (87):

—€0(€ + 1){ + K} (Wo)e.

ia
()
For d = rgy, the radius corresponding to the bottom of the upper mantle, § = 0.09.
In this case we are at the limits of the validity of expression (94), which becomes
increasingly accurate as § — 0 (e.g., 6 = 0.01 when d = ry,—if we wish to
model a 100-km-thick asthenospheric channel). In the inversion experiments de-
scribed below, the system of equations (92) will be based on the approximation
(94) rather than Eq. (87). We may then ensure that the normalized field of lateral
viscosity variations we recover will satisfy the viscosity—positivity constraint,
v (8, ) > —1, by choosing the appropriate value for F in (94). We thereby
constrain the magnitudes (and tradeoffs) of the various parameters appearing in
the definition of F.

—F A€+ D(Wor = Qp;  F =

M
L

o | =

1
- + K.
5 K. 94)
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An important concern arising from the inversion of (94) is the magnitude of the
bias produced by the inevitable truncation of the spherical harmonic expansion of
the plate-velocity scalars Wy(6, ¢), Vo(6, ¢) and of the viscosity v,(6, ¢) itself.
We will examine this issue by considering inversion experiments in which we
choose different levels of truncation in the spherical harmonic expansion of the
lateral viscosity variations. ‘

In the first experiment we include the harmonic coefficients of the plate-velocity
scalars in (93) up to degree and order 15 and invert (94) for the harmonic coeffi-
cients of the lateral viscosity variations up to degree and order 30. This truncation
level for the viscosity is based on the selection rules for the coupling coeffi-
cients, in Eq. (91), which imply that viscosity variations corresponding to degrees
u > 30 will not contribute to Q7 (assuming that all plate-velocity coefficients
vanish for degrees n > 15). The system of equations (92) that correspond to these
truncation levels thus comprises 255 equations [corresponding to € = 1-15 in
Eq. (94)] and 960 unknowns [corresponding to u = 1-30 in Eq. (91)]. We may
invert this underdetermined system by seeking the minimum-norm field of lat-
eral viscosity variations which satisfies (92). The harmonic coefficients of this
minimum-norm viscosity are thus given by

v = M'(M M")"'w, (95)

in which M, v, and w are as defined previously in Eq. (92). We find, essentially
by trial and error, that the field of lateral viscosity variations yielded by (95) bears
no resemblance to the expected pattern of weak plate boundaries and strong plate
interiors unless K < — 30.

In Fig. 15a we show the lateral viscosity variations v, (0, ¢) inferred, according
to (95), when K = —40. In this map it is immediately clear that the very-low-
viscosity regions are almost entirely confined to the plate boundaries and the plate
interiors have higher viscosities as expected. When K = — 40 the inferred lateral
viscosity variations satisfy the positivity condition »,(6, ¢) > —1 when the
constant F in (94) has values F < 28. The field shown in Fig. 15a assumes
F = 28.If we assume a lithospheric thickness of 100 km (¢ = 0.016) and an upper
mantle layer defined by d = rg;, (6 = 0.09) we then infer, according to (94), that
{(m.)/ = 10. According to the absolute lithospheric viscosity estimates in (51)
for K = — 40, we also infer, for F = 28, that ,, = 0.8 X 10%' Pas.

The field of lateral viscosity variations yielded by (95), when K = —60, is
nearly identical to that shown in Fig. 15a, provided that we select F = 42 to ensure
that min[y,] = — 1. In this case we find according to (94) (for ¢ = 0.016 and
6 = 0.09) that F = 42 implies (n,)/n,, = 7. The absolute viscosity estimate in
(51), for K = —60, thus implies that n,, = 0.9 X 10?' Pa s. These inferences for
the absolute value of the upper-mantle viscosity agree closely with those inferred,
in Section 2.3, by matching the observed plate motions to the plate-like surface
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b LATERAL VISCOSITY (L=1-15)

FiG. 15. (a) The field of lateral viscosity variations in the lithosphere [v,(6, ¢) defined in Eq. (56)],
in the degree range € = 1-30, obtained from a minimum-norm inversion [see Eq. (95)] of Eq. (94)
when K = — 40. The amplitude of the normalized viscosity variations shown here is fixed by choosing
F'= 281in Eq. (94). The lateral viscosity variations shown here are constrained by the observed long-
wavelength (€ = 1-15) plate divergence and vorticity. (b) The long-wavelength component, synthe-
sized from harmonics in the range £ = 1-15, of the lateral viscosity variations in (a).

flow calculated using the density perturbations derived from seismic models of
mantle heterogeneity.

The amplitude spectrum of the lateral viscosity variations in Fig. 15a is shown
in Fig. 16b by the square symbols. It is clear that the root-mean-square (rms)
amplitude in any harmonic degree decreases sharply beyond degree € = 18. This
is also verified by the map in Fig. 15b in which we show the lateral viscosity
variations synthesized from the harmonic coefficients up to degree and order 15.
The maps in Figs. 15a and 15b agree very well in their spatial pattern and in their
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FiG. 16. (a) The cross-correlation, at each degree €, between the field of lithospheric lateral viscosity
variations in Fig. 15a and the field of lateral viscosity variations inferred from a separate inversion of
Eq. (94) (with K = —40) in which the viscosity variations are truncated at (i.e., assumed to be zero
beyond) degree 20. (b) The rms amplitude, at each degree £, of the lateral viscosity variations »,(6,
¢) in Fig. 15a (0, “€ = 1-30") and the lateral viscosity variations obtained from the truncated degree
20 inversion in (a) (A, “€ = 1-20").

overall amplitude. This suggests that the coupling of the observed plate-velocity
scalars synthesized from harmonic coefficients up to degree € = 15 may be ade-
quately described by a field of lateral viscosity variations up to degree £ = 18. We
have directly tested this hypothesis by inverting Eq. (94) to determine the field of
lateral viscosity variations, up to degree and order 20, which couples the observed
plate-velocity scalars described up to degree and order 15. This inversion is again
underdetermined, and thus we carry out the minimum-norm inversion described
in Eq. (95). We find that when K = — 40 the condition min[z;] = — 1 requires us
to select F = 29 (in close agreement with that inferred from the €,,,, = 30 inver-
sion). The amplitude spectrum of the €., = 20 inversion is shown in Fig. 16b
by the triangle symbols. In Fig. 16a we show the correlation, at each harmonic
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degree, between the lateral viscosity variations obtained from the €,.., = 20 and
€...« = 30 inversions.

These viscosity inversions have demonstrated that the poloidal and toroidal
components of the observed lithospheric plate motions (and the equipartitioning
of energy among these two components) may be explained by physically plausible
lateral variations of the effective viscosity of the lithosphere. The lateral viscosity
variations we infer reveal a clear pattern of weak plate boundaries and strong plate
interiors. Although this may have been expected a priori, Fig. 15 shows some
interesting and unexpected complexities. Although the East Pacific ridge is a re-
gion of rapid divergence and high heat flow, it does not appear to be a prominent
zone of weakness. Significant reductions of strength are manifested in western
North America, the Aleutian arc, and the Pacific—Antarctic ridge. This suggests a
combined thermal and nonlinear (strain-induced softening) interpretation of the
lateral variations in Fig. 15. Such an interpretation must be viewed with some
caution, however, because these viscosity inferences are obtained from a signifi-
cantly underdetermined inversion procedure. Unfortunately the viscosity inver-
sions described here tells us nothing concerning the possible importance of lateral
viscosity variations in the deep mantle. This is the subject to which we turn in the
next section.

4. MANTLE DyNAMICS WITH 3D VISCOSITY VARIATIONS

The equations describing the effects of an arbitrary three-dimensional (3D) vis-
cosity distribution on buoyancy-induced mantle flow are derived in Appendix IV.
The two coupled differential equations [Eqgs. (IV.10) and (IV.11)], governing the
poloidal and toroidal flows, are evidently rather complicated and are not amenable
to straightforward mathematical analysis. In this section we shall describe an al-
ternative approach based on a variational formulation of the momentum equation.
As suggested in Forte (1992), this variational treatment allows us to explicitly
derive the important symmetry relations that govern the relationship between po-
loidal and toroidal flows and the driving density contrasts. The application of a
variational approach to mantle-flow problems was also considered recently by
Cadek ez al. (1993), who suggest the application of an iterative numerical scheme.
The formulation that we shall present is noniterative and enables the derivation of
an explicit solution for the flow velocities in a spherical shell with heterogeneous
viscosity.

4.1. Formulation of the Variational Principle

The hydrodynamic field equations, in Cartesian tensor notation, that describe
the conservation of mass, momentum, and the relationship between stress and
strain rate are respectively, in the Boussinesq approximation:
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du, = 0, (96)
0, Ty + podip, + p1dihy = 0, o7
T, = —P|5,~j + 2nEy; E; = %(a,.u, + du,). (98)

The various quantities appearing in (96)—(98) are defined in Appendix IV. In
Eq. (97) we have already subtracted the hydrostatic background state in which
9:Py = pyd; Po. Equations (96)—(98) describe a flow field u; driven by density
perturbations p,, which are assumed to be known a priori (and thus treated as
fixed). This flow is assumed to occur in a medium occupying a volume V and
bounded by a surface S. The flow u, will satisfy the following boundary condi-
tions on S:

Au; = 0, 99)
hAT, =0 on S, (100)
u; = ¢, on S§,, (101)

where 7, is the unit vector that is everywhere normal to S, /, is any unit vector that
is tangent to any point on S(A;A; = 0), S, is the portion of S on which the free-slip
condition (100) applies, S, is the remaining portion of S (ie., S, =S — §;) on
which a given tangential velocity field ¢, (#,c; = 0) is prescribed.

Let us now introduce a kinematically admissible flow perturbation du; satisfy-
ing Eq. (96), such that the flow field u, + Ju; satisfies the same boundary condi-
tions (99)—(101) [the flow u;, of course, satisfies Egs. (96)—(101)]. The inner
product of §u; with Eq. (97) yields

0:(Tubu) — Tu(0:8u) + 9.(popi6u;) + pidudipo = 0, (102)

in which we have used 3,01, = 0. Integrating Eq. (102) over the volume V occu-
pied by the medium, we obtain

Jv [plsui 3o — T,0EdV + J; (A T0u; + p0¢lﬂk6uk] ds =0, (103)

in which we employed the result 7},0,6u, = T,,6 E,;, which follows from the sym-
metry of T,;. Both u; and u; + du; satisfy Eq. (99) and thus 7,64, = 0 on S. Since
u; and u; + Su; satisfy Eq. (101), it is clear that the S, must vanish on S, and,
owing to condition (100), #,T};0 u, must vanish on S, . Clearly the surface integral
in (103) must vanish, thus yielding

f [20E,8E, — p,d,¢odu]dV = 0. (104)
\4
To obtain (104) we have also used P, 6,6 E,; = P,0 E,, = 0, owing to (96). As the

density perturbations p, and the reference gravity 9, ¢, are known a priori (and
are thus treated as constant), we may rewrite (104) as
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SW=0;, W= fv ME,E; — pyu:ddoldV. (105)

In writing Eq. (105) we have made the important assumption that 67 = 0, which
is valid only when the viscosity is not dependent on the flow velocity u; [i.e., when
the rheology is linear and thus characterized by a stress exponent n = 1 in
Eq. (3)]. The strong temperature dependence of viscosity shown in Eq. (3) implies
that the dependence on strain or stress will be relatively weak, and thus Eq. (105)
is expected to hold very well in the mantle. It is possible to formulate a hybrid
variational principle when the viscosity is stress-dependent; the interested reader
may refer to the initial study of Cadek er al. (1993).

The quantity W in Eq. (105) is the difference between the rate of viscous dissi-
pation of energy (nE;E;) and the rate of energy released by buoyancy (p,u,0, ¢,).
We have shown that a flow field satisfies the field equations (96)—(98), and the
boundary conditions (99)—(101), if and only if the functional W in (105) is sta-
tionary with respect to perturbations of the flow field. We may further show that
W is also an absolute minimum for this flow field. Let u? be the flow which satis-
fies W = 0 in (105) [and thus Egs. (96)—(101)], and let u! be any kinematically
admissible flow satisfying Eqs. (96), (99), (100), and u! = 0 on S,. For the flow
u; = u? + € u! the quantity W in (105) may be written as

W = j [UEZE(:} — pudd; poldV
v
+ e f [2nESES — piuld;doldV (106)
v

+ & J'V nELELdV,

where E9 and E}; are the strain-rate tensors that correspond respectively to u? and
u!. According to (106) we may regard W as a function of &:

W(e) = W) + (%) e+ l<d2W> €, (107)

2\ de?

where W(0), (dW/dsg),, and (d*W/de?), correspond respectively to the first,
second, and third integrals in (106). According to Eq. (105), we have 6W =
(dW/de),0¢ = 0 and thus (dW/ds), = 0. Expression (107) thus simplifies to

W) = W) + o LX) e
@) = wo) + 5( 75 ) &

a*w
= ZJ nEELdV
de* /, 4

Since
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is a positive—definite quantity, it is clear that W(0) must be the absolute minimum
of W(e). This minimum principle is immediately recognizable as an extension of
the minimum-dissipation theorem of Helmholtz (e.g., Batchelor, 1967, pp. 227—
228) to fluids with internal buoyancy sources.

4.2. Variational Calculation of Buoyancy-Induced Flow

The application of the variational principle (105) to the problem of viscous flow
in a spherical shell is considerably facilitated by the use of generalized spheri-
cal harmonic basis functions. A detailed discussion of the use of generalized
spherical harmonics, in problems of elastodynamics in spherical geometry, is
given by Phinney and Burridge (1973) (hereafter referred to as PB for con-
venience). The derivations presented below will be extensively based on the
covariant differentiation rules described in PB. The principal properties of gener-
alized spherical harmonic basis functions Y%"(6, ¢) are described in Appendix II,
and these properties are extensively exploited in the following derivations.

We begin by expressing E;E; in terms of the so-called contravariant canonical
components that are described in PB:

E,E; = CoCuE®C, CsE" = e, e55EBEY (108)

EOOE()() + 2E++E— - + 2E+—E+— . 4E0+E()—’
in which
E® = {{yu=f + uf| (109)

= €

1 :

EZ 2( [U%Q\B)m(r) - U({ma)m(r)]y(eai’B)m(g, ®).
=0 m=—¢

Employing the covariant differentiation rules in PB to evaluate the Ug!$m(r) in
(109), we obtain

E® = S(ERYS,  E o= X(EBNY, B = D(ERYY,
€&m &m €&m
E- = >(E)pYe'm,  E* = Y (EswYy, E-- = Z(E6>zYz2m,
m m (,m
(110)
where
dUy" 9 1
(E)p = ——, (EJ=—[U"+ U — = U,
dr 2r r
(E )m — l i l U+m + Q_f U()m (E )m — l i e l Ufm + .‘(E UOm
3 2\ dr r ¢ 2r 8 ok 2\dr )¢ 2r £

I Lo,
(Es)e = ;QﬁUz*": (Eo)t = ;QéU{"', (111
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in which U™ is the radially varying (generalized) spherical harmonic coefficient
of the contravariant flow-velocity component u®,

u(r, 8, ¢) = >, Up(nNYe(0, $),

m

and

Qf = Ve + 1)/2, Q¢ =V — D + 2)/2.

Substitution of the expressions in (110) into Eq. (108), and the subsequent use of
the coupling rule (I11.19) in Appendix II, yields the following result:

€+s
EE; = > > > [€+ D@2s+ DQ2J + 1)]'/2<51 g 4 )

€m st J=[€—s]| t—m —t

x {(Ex)?(E.X(g : g) . 2(E5)z"(E6);<§ 5 (J)) + ABI(E);

€ s J (€ s J o
X (0 0 0) _4(E3)((E4)3<1 _ 0)}(Y/ )E. (112)

We now introduce the following harmonic decomposition of the 3D viscosity
distribution:

n(r, 6, ¢) = 2, nuUNYLO, ¢). (113)

Combining expressions (112) and (113), we obtain

Ots
fv nEE; dV =Y > > 4w[(2€ + D2s + DH2J + D]~

&m st J=|€—s|

e s J j“ —m—1t
X(m t—m—t) y (r)

X {[(E.)zr(E,x. + AENE] (g : g) + UEN(E):

¢ s J (€ s J 5
X <2 9 O> = 4(E3)l’(E4)s<l 1 O)}r dr,
(114)

in which r = b defines the inner surface of the shell and r = a defines the outer
surface of the shell.
We now evaluate the buoyancy integral in (105):

f piudip, dV = — j piu,go dv, (115)
v v

in which gy(r) is the radial gravitational acceleration. The radial flow u, is identi-
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cal to the contravariant flow component u°, and we therefore obtain from (115)
the following:

JV piud; o dV = — 2477’ J (p)F U gor? dr, (116)
&m b

in which (p, )7 is the radially varying spherical harmonic coefficient of the density
perturbation field p, (1, 0, @).

The solenoidal velocity field u, which satisfies Eq. (96), may be written as
(Backus, 1958):

u=V X Ap + Ag, (117)

where p(7, 0, ¢), q(r, 8, @) are respectively the poloidal and toroidal flow scalars.
The contravariant flow components u*(r, 6, ¢») may be obtained from (117) using

u = Cl w;, (118)

where CJ; is the unitary (complex rotation) matrix defined in PB. Combining
(117) and (118), we may show that

Un(r) = ( .

pe(n),
1d

Uen(r) = ‘Qf<— — [ (nN] + Lf12"(r)>, (119)
rdr

1d
Ugn(r) = ~Qf<— — [rpp(n)] — qu”(r)>,
r dr

in which ¢ = V/ —1 and p#(r), g¥(r) are respectively the spherical harmonic co-
efficients of the poloidal and toroidal flow scalars.

On the basis of expression (119) we now obtain the explicit poloidal—toroidal
dependence of the terms in (111) that appear in the viscous dissipation inte-
gral (114):

20092 | dpy 1 1
(Ee(r) = —Q[”e—m - pz"(r)}, (E)e(r) = = (EDe(),
r dr r 2
Ppr(n | 20 @) qr)
(BJE() = = [ el ()] s [ s . ]
o P, 2092 [ dar e
(EJe(r) = — 2[ o = ()] [dr = ] (120)
Eori) = — DO [dpzn(r) G qu)]’
¥ dr r
QH(Q) | dpy 7
Eoe(r) = - 2K )[ PEL B qu"(r)].
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Substitution of (120) into (114) yields

£+s

fv nE;E; dV = 4w > > > [2€ + D@2s + DQ2J + D]

em st J=|€—s|

o (€5 J f e (€5 6(2)* (1)
mit -m—1)L™ 00 o0 r?
o | dpE _pelldp _pi| (€ s T) 204006050
dr r dr r 2 =20 r?

dpt | pt dpi | p} & s
iy + B oo m _|_ fu— i =y
% [ dr r ts dr r T I =10

2 pym £)2 m
N [m i (q_)]

ar? - r? dr

dp. | 2L d(q
X =g %) P+ o — 4 142 ar.
ar> ar\r)|]" (121)

The substitution of (119) into (116) also yields

fv pudih dV = 47722(()‘?)2 f, } (L‘r)-"— pi gor? dr. (122)

The variational principle in (105) requires that we minimize the functional W
with respect to the flow field u. To accomplish this minimization, in a manner that
directly provides the flow solution, we expand the poloidal and toroidal flow co-
efficients in terms of radial basis functions:

pe(r) = 2, pefir)
n=l (123)

N

qr(r) = EI 2G88(1).
The radial basis functions f,(r) and g,(r) must satisfy the boundary conditions
(99)—(101). When the expressions in (123) are substituted in Eqs. (121) and
(122), the function W in (105) will then vary according to the values of the coef-
ficients ,p and ,q¢. The particular values of these coefficients that minimize W
will define the flow solution. When W is a minimum, the following conditions
must necessarily be satisfied:

aw 9 J' [nEE d.p0] dV = 0 (124)
Y eeflieg. — Uu. i — ,
oD aGpy Jv et T PO
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ow 9
0G.qy)  9G.q%)
The set of coefficients ,p: and ,q! that satisfy (124) and (125) define the flow
solution we seek.
The substitution of expression (123) into (121) and (122), and the evaluation of
(124), yields (omitting algebraic details) the following:

2211(k€mnst)kpe+2212(k€mn9t)kq'e"

k t&m

nE,E, dV = 0. (125)

2 I\ 2 a i [v*
= &J’[ g0ﬁ1 % r2 dr, (126)

Mo
in which
O+s

Li(k, €, m; nst)= 2 [2€ + D@2s + 1)(2J + 1)]'”?

J=[€~s|

5 € s J f” (€ s JY 12000202
m t —m — I b Mo 0 0 O r?

52 @ B dfn _ (l + (-1)”‘”) s J

dr 2 -2 0
4Q 04003 df,\ df,, ,, ¢ s J
1 -1 0

rZ
X 20404 [dsz ek F f][dzf“ . Ay f]}] A .
dr? r? dr? r? (127)

Sk, €, m; n s t) = —t z [2€ + D(2s + D(RJ + 1)]'”?

¢ J > (1 — (=1)ers+sy [agym—r

m -m — 1 2
¢ 4Q‘Q‘Q ()3 df, f,,
2 —2 0 e & dr r
. )M[ (%))
1 - dr \ r

&f, | 2y i
: [dﬂ caor

r?

(128)

where 7, is simply a reference viscosity employed to normalize the viscosity dis-
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tribution. The symmetry of the first Wigner symbol in the integrand of (127) [see
Eq. (I1.25) in Appendix II], and the presence of the factor [1 + (— 1)¢***/], implies
that the sum in (127) extends only over the values J = |[€ — |, [€ — s| + 2,...,
€+ s — 2,€ + s. Similarly, the factor [1 — (—1)¢***/]in (128) implies that the
sum extends only over the values J = |€ — s| + 1,[€ — 5] +3,...,€+ s — 3,
€+s— 1.

The substitution of (123) into Eq. (121), and the evaluation of (125), yields
(again, omitting algebraic details) the following:
> [E Tk, €, ms ny s, 0) g = D, >, Lk, €,m; n,s,0) pr,  (129)

k k  €m

in which

€+s
Tk, €,m; n,s, )= 2, [(2€ + D(2s + 1)(2J + 1)]”2<51 . ! >

J=|€—s|

« (1 +‘(_1)€+5+J) ja nj—m—/ e s J
2 b T’O 2 _2 0

400050403 <e
X - gkg” -

r? 1

- [’dir <g7ﬂ[r§?<g7>]}r o (130)

L(k, €, m; n,s,t) = —t z [2¢ + D@2s + DH2J + D]'"?

N g>zmm

J=|€—s|
>’< ¢ s J (1 — (=1)t+s+) Ja e
m t —m—t 9 A
(e s 401080405 | dfc | fu
2 -2 0 2 ar o |®
€ s IN\ooenl| @ 2082
- (1 . 0)29‘0‘[dr2 +— 1

2]}
X | r—| = r? dr.
dr\ r (131)

The presence of the factor [1 + (— 1)****/] in (130) implies that the sum extends
only over the values J = |€ — s|, [€ — s| +2,...,€+ s — 2,€ + s. Similarly,
the presence of the factor [1 — (—1)****/] in (131) implies that the sum extends
only over the values J = [€ — s| + 1,[€ — s| +3,..., € +s —3,€+s — I
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Equations (126) and (129) constitute a coupled system of linear equations for
the flow variables p# and ,q7. This linearity ensures that the usual principle of
superposition remains valid [i.e., if u,(r, 8, ¢) is excited by density perturbation
0p:i(r, 6, @) and u,(r, 6, @) is excited by density perturbation 8p,(r, 8, ¢), then
u, + u, will be excited by 6p, + 8p,]. This linearity thus implies that the concept
of Green functions (e.g. Forte and Peltier, 1987) will also be valid in a spherical
fluid shell with a given 3D distribution of viscosity.

Equation (126) describes the flow that is directly excited by buoyancy forces,
and this equation corresponds to the differential equation (IV.10) derived in Ap-
pendix IV. In Eq. (126) we observe that buoyancy forces will, in general, directly
excite a toroidal flow field. This, of course, will not be true in a mantle with
spherically symmetric viscosity, and indeed one may readily verify that J,(k, €,
m; n, s, 1) = 0 when n(r, 6, ¢) = n3(r). On the basis of the spherical harmonic
coupling relations contained in expressions (127) and (128), we may observe that
a degree s field of density perturbations will directly excite the following flow
components:

)2 via n(r);
Pt P, and gy ", via mi(n);
(p); = - (132)
plels,  Plelssas---s Dévs—2, Pess, and
Q{[fy|+17 Q\ltj—r"s|+37---, qeévi-3, qivs—, via mg(n)

Equation (126) also describes the viscous coupling of the buoyancy-induced
flow in (132) to other flow components not directly coupled to buoyancy sources.
We may understand the nature of this viscous coupling with the following ex-
ample. Let us assume for simplicity that the only component of density heteroge-
neity is given by degree s and order ¢, as in (132). Equation (132) is valid for all
degrees, including s + 1, s = 2, s = 3, ..., for which the density heterogeneity
is assumed to be zero. We thus see that a %7 viscosity structure will lead to the
coupling of p‘z%, p'3%, . . ., poloidal flow components to the components pi=7,
pL, pisr, in (132). Even the apparently simple interaction of (p,): density hetero-
geneity with i} lateral viscosity variations will generate poloidal flow components
corresponding to all harmonic degrees. In the particular case of an i} lateral vis-
cosity structure we expect that the flow corresponding to p! and the nearest-neigh-
bor terms pi=7, pizr, gt~ will be strongest.

The poloidal and toroidal flow components excited by buoyancy forces in
Eq. (126) are not independent. Equation (129) describes the coupling that must
exist between the poloidal flow components and the toroidal flow components;
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this equation corresponds directly to differential Equation (IV.11) derived in Ap-
pendix IV. On the basis of the spherical harmonic coupling implicit in expressions
(130) and (131) we may verify that the toroidal flow components will be coupled
to poloidal flow as follows:

pi" = ¢St qiay, via 07 (1);
(133)
t—m t—m t—m t—m
Ple=s+1» Ple=sj+3> «++s  Pets—35 Pers—1 —
q[téjfms\a qlt«;fmsHZ, R q};rsrLZ, 6]%1;", via 772"(”)

4.3. Generalized Green Functions

In the previous section we noted that the flow equations (126) and (129) are
linear in the flow variables, thus ensuring the validity of the linear superposition
principle. The concept of the Green function may therefore be generalized to a
fluid shell with lateral viscosity variations. We begin our derivation of generalized
Green functions by rewriting Eqs. (126) and (129) as follows:

E I](k, f; m; nr Sy _Z) k]?? + E JZ(ks €> m; n; Sr —‘t) kqgl /

k€,m k€,m
2((4)?
N
Lk, €, m; n, s, —1) ,q7 = ; Lk, € m; n, s, —1) ,pp. (135)

1 o PE v a3

k,€,m

We now rewrite (134) and (135) as

> A¥mpp + Y, B qp = L., (136)
k€,m k€,m
>, Cdr gy = >, Di» ,pp, (137)
k€m k.€m
in which
Akn = [ (k, €, m; n, 5, —1), Bm = J,(k, €, m; n, s, —1),
2(0y)2 a :
L = 2Oy [ g, @ e (138)
Mo b r
Ckm = J (k, €, m; n, s, —1), Ditm = Lk, €, m; n, s, —1).

It is clear that Egs. (136) and (137) constitute a coupled set of matrix equations in
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which the rows of the individual matrices, given in (138), are defiried by letting
(k, €, m) vary, for a given (n, s, t), and the columns are defined by letting (n, s, 1)
vary for a fixed (k, €, m).
The solution of Egs. (136) and (137) may be formally written as
P8 = 2, PihL, (139)

n,s,t

qp = Z 03t Lo, (140)

where the matrix elements Pz, in (139) are obtained from
P=[A+BC'D] (141)
and the matrix elements Q7 in (140) are obtained from
Q=C"'DP (142)

Combining the expression for L,,, in (138), with expression (123) and (139)
and (140), we obtain

] p):lr) ‘)f,(r’) dr',  (143)

pr(n = [ [2 JUPPE f ()2 (~ 1y

k.n

] (p»f}(r’) ae. [143

qr(r) = f7 f > [2 8N Ot f(r )2 (= 172

Expressions analogous to (143) and (144) were obtained in the derivation of po-
loidal flow Green functions, for a spherically symmetric mantle, by Forte and
Peltier (1987):

pr(r) = —Jpe( (pl)e(r) , (145)

in which p,(r, r') is the poloidal flow Green function. The definition of the gen-
eralized Green functions, which describe the excitation of flow by buoyancy
forces in a fluid shell with lateral viscosity variations, is immediately evident from
a comparison of (145) with (143) and (144):

Pi.(n, ¥y = kE (PP, £,07)2Q8)2(— 1), (146)
Ou(r, 1) = Z (N0 £,(r)2(QN)2(— 1y7'2, (147)

in which Pg,(r, r') and Qf,(r, r") are respectively the poloidal and toroidal Green
functions.

We have so far avoided making an explicit choice for the radial basis functions
fe(r) and g,(r) used to describe the poloidal and toroidal flow scalars, respectively.
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Any choice for these basis functions, provided it satisfies the boundary conditions
(99)—(101), will be acceptable. In the case of free-slip, zero radial velocity,
boundary conditions at » = q, b, the poloidal and toroidal flow scalars must satisfy

d2 m(r)
pr(n =0 = L,
dr (148)
d m
—(qf—(r)> =0, at r=a b
dr r

Perhaps the simplest and most easily employed set of radial basis functions that
satisfy (148) are the following:

() = sin[kw(r — a)],
a—b (149)
gi(r) = rcos[kw(r = a):l.
a— b

A relatively straightforward illustration of the utility of the radial basis func-
tions in (149) is provided by considering the horizontal divergence (V,, - u)(r =
a) of surface flow in an isoviscous fluid shell. According to Eq. (A13) in Forte and
Peltier (1987) we have '

€€ + 1 d
(V- Wi (r = a) = (—a—) [d—r p?a"(r)] . (150)

=a

On the basis of expressions (143) and (146), we thus obtain

(Vo wp(r = @) = - 'S saooonr ar. (1s1)

in which the generalized horizontal divergence kernel Sg,(r') is given by

we + 1 S| ar
Sg.(r') = ,( P )kE [];(rr)} T F(rD2(0)2(—=Dr'. (152)

r=a

In a fluid shell with spherically symmetric viscosity the terms Py, will vanish
for all € # s and m # 1. In an isoviscous fluid shell, the exact expression for the
horizontal divergence kernel S.(r'), derived in Appendix A in Forte and Peltier
(1987), is as follows:

L€ + 1

o () Ly (a\T 1= gy
r)oL = @prer T \F) T = @by |

Se(r') =
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F1G. 17. Horizontal divergence kernels for an isoviscous mantle. The degree € defining each kernel
is indicated by the adjacent number. The solid lines are the kernels calculated with the exact theory
embodied in Eq. (153). The dashed lines are the kernels calculated on the basis of the variational
principle and are defined by Eq. (152), in which N = 10. The dashed and solid lines are essentially
overlapping, indicating the accuracy of the variational procedure.

In Fig. 17 we show a selection of divergence kernels given by the exact expres-
sion (153), in solid lines, along with the kernels provided by expression (152),
with N = 10 and f,(r) in (149), shown by dashed lines. The kernels obtained with
radial basis f;(r) in (149) are virtually identical to the exact ones. On the basis of
this excellent performance we shall truncate the sums over k and # in (143) and
(144) at k = n = 10, for all the calculations that follow.

4.4. Horizontal Divergence and Radial Vorticity of Buoyancy-Induced
Surface Flow

To investigate the effects of lateral viscosity variations in a fluid shell (e.g., the
Earth’s mantle) we shall once again express the viscosity variations according to
Eq. (56), that is,

n(r, 0, &) = ns(N[L + v(r, 6, )], (154)

in which n{(r) is the spherical average of the field n(r, 6, ¢) at any radius r and
v(r, 0, ¢) describes the lateral variations of viscosity relative to this horizontal
average (this implies that the € = 0, m = O spherical harmonic component of
v(r, 8, ¢) vanishes). The parameterization in (154) allows us to describe ex-
treme lateral variations of viscosity with relatively small amplitude variations in
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v(r, 8, ¢). By letting v(r, 6, ¢) approach values arbitrarily close to —1 we may
easily describe viscosity reductions spanning several orders of magnitude.

The first example illustrating the effects of lateral viscosity variation will
be based on the degree 1 field of lateral variations v(r, 6, ¢), obtained by scal-
ing the depth-integrated degree 1 shear—velocity heterogeneity 8v,/v, in model
SH8/WM 13 of Woodward et al. (1993):

vo, ¢) = 1. 3 [ | <VV'> 1 dr]Yz"(e, ) (155)

m=—1 b 3 1

in which the scaling factor f, is selected so that
min[y] = —x (156)

where x > 0. We emphasize that the degree 1 field given by Eq. (155) does not
vary with radius. In Fig. 18 we show the degree 1 viscosity variation #(, ¢) when
fi = foo (i.e., min[r] = —0.9). The region of minimum viscosity is centered near
the Pacific—Antarctic spreading ridge, which, in model SH8/WM13, is a region
of strongly reduced shear velocity extending throughout the underlying upper
mantle. The choice x = 0.9 implies that, at any depth, the viscosity n(r, 8, ¢) will
vary from a minimum value of 0.1 73(r) to a maximum value 1.9 9§(r) (i.e., a
factor of 19 lateral variation).

We now consider the horizontal divergence and radial vorticity of the surface
flow generated in the presence of the degree 1 lateral viscosity variations in
Fig. 18. The general expression for the horizontal divergence was given by
Egs. (151)—(152). The radial vorticity (F- V X w)y(r = a) is given by

FiG. 18. The degree 1 field of normalized lateral variations of viscosity [i.e., »(6, ¢) in Eq. (154)],
obtained from the depth-integrated degree 1 shear—velocity heterogeneity in model SH8/WM13 ac-
cording to Eq. (155). The factor f, in Eq. (155) is chosen such that the minimum value of the field is
—0.9. The maximum value of this field is then +0.9.
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F-V Xwpr=a = —@ qi(r = a). (157)

Combining (144) and (157), we therefore obtain

¢V X wetr = @) = 'S meoear. ass)

in which the radial vorticity kernel R, (r') is given by

€Qe + 1
Ry,(r') = — ( )25 &(r = @) Qi fu(r')2(Q)* (= Dr'. (159)

A consideration of some of the divergence and vorticity kernels will explicitly
demonstrate the flow coupling due to the € = 1 viscosity variations in (155). We
assume, for simplicity, that n3(r) = 7, (i.e., constant). In Fig. 19 we show the
divergence kernels for € = 1 — 6, corresponding to a Re[Y|(#, ¢)] density load
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FiG. 19. The horizontal divergence kernels S§,(r'), defined in Eq. (152) with N = 10, correspond-
ing to a Re[Y1(0, ¢)] density load (i.e., for s = I, ¢ = 1). The 3D viscosity distribution is given by the
degree 1 field of lateral viscosity variations »(#, ¢) in Fig. 18 and a spherically symmetric viscosity
m(r)/m, = 1, such that n(r, 6, $)/m, = 1 + v(0, ¢). In each of the panels are the 2€ + 1 divergence
kernels corresponding to the real and imaginary parts of Sg,(r') form = 0, 1, . .., €. The dashed line
in the panel labeled “€ = 17 is the single non-zero-divergence kernel for the spherically symmetric
viscosity distribution n(r, 8, ¢)/m, = 1 [in this case, Sg,(r') = 0 unless (€, m) = (s, 1)].
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(i.e., s = 1,1 = 1). According to (132) we expect significant flow at degrees 1 and
2 that is directly driven by this density load. This is indeed the case in Fig. 19. We
also observe that the divergence at € = 3 is also significant. This degree 3 field is
produced by viscous coupling to the buoyancy-driven € = 1 flow. The degree 4
divergence is produced by viscous coupling to the degree 2 flow, which is itself
maintained by viscous coupling to the degree 1 buoyancy forces, and thus is much
weaker than the degree 3 flow. Viscous coupling also yields a degree 5 divergence
(coupled to degree 3 flow), a degree 6 divergence (coupled to degree 4 flow), and
so on. Clearly, the strength of viscous coupling is strongly diminished beyond
degree 3, owing to the very limited spectral range of the lateral viscosity field
(only degree 1 in this example).

In Fig. 20 we have the radial vorticity kernels, for € = 1-6, corresponding to
the Re[Y1(6, ¢)] density load. According to (132), we expect a viscous coupling
of the degree 1 buoyancy to degree 1 toroidal flow, and this is clearly evident in
Fig. 20. The degree 2 vorticity is produced by viscous coupling to the degree 1
buoyancy-induced poloidal flow according to Eq. (133). The degree 3 vorticity is
generated by viscous coupling to degree 2 and 3 poloidal flows according to

-0.03 0.00 —0.03 0.00 -0.03 0.00

5000 - - B
4500 | - B

4000 |- - -
=4 =5 =6
3500611 |

1 | C ! 1 | | S |
-0.03 0.00 -0.03 0.00 -0.03 0.00

AMPLITUDE

Fi6. 20. The radial vorticity kernels R, ('), defined in Eq. (10) with N = 10, corresponding to a
Re[Y!(0, ¢)] density load (i.e., for s = 1, t = 1). The 3D viscosity distribution is the same as in
Fig. 19. In each panel are the 2€ + 1 vorticity kernels corresponding to the real and imaginary parts
of Ry, (r') form = 0, 1, .. ., €. Observe that the vorticity kernel Re[R}}(r")] is identically zero.
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FiG. 21. The horizontal divergence kernels Sg,(r'), defined in Eq. (152) with N = 10, correspond-
ing to an Im[ ¥3(6, ¢)] density load [i.e., for s = 2, ¢ = 2]. The 3D viscosity distribution is the same
as in Fig. 19. In each panel are the 2¢ + 1 divergence kernels corresponding to the real and imaginary
parts of Sg,(r') form = 0, 1, ..., €. The dashed line in the panel labeled “€ = 2” is the single non-
zero-divergence kernel for the spherically symmetric viscosity distribution 7(r, 6, ¢)/m, = 1 (i.e., for
€=2,m=2).

(133). The degree 4 vorticity is generated by viscous coupling to degree 3 and 4
poloidal flows, and so on. Clearly, as in the case of the divergence field, viscous
coupling yields rapidly diminishing vorticity beyond degree 3 because of the lim-
ited spectral range of the lateral viscosity variations.

As a further illustration of the mechanism of coupling, we show in Fig. 21 the
divergence kernels corresponding to the interaction of an Im[Y3(0, ¢)] density
load with the degree 1 viscosity variations. According to (132), we expect domi-
nant flow at € = 2 and significant flow at € = 1,3 arising from the viscous cou-
pling to the degree 2 buoyancy forces. These expectations are verified in Fig. 21.
The degree 4 divergence in Fig. 21 arises through viscous coupling to the degree
2 flow. The degree 5 and 6 divergences are respectively coupled to the degree 3
and 4 flows and, since they are already “twice removed” from the primary buoy-
ancy force, their amplitudes are now significantly weaker than the divergence at
¢ < 4. According to (132), we also expect significant buoyancy-driven degree 2
toroidal flow and this is verified by the vorticity kernels shown in Fig. 22. The
degree 1 and 3 vorticities are generated by viscous coupling to the degree 2
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F1G. 22. The radial vorticity kernels R, ("), defined in Eq. (159) with N = 10, corresponding to
an Im[Y3(0, ¢)] density load [i.e., for s = 2, ¢ = 2]. The 3D viscosity distribution is the same as in
Fig. 19. In each of the panels are the 2€ + 1 vorticity kernels corresponding to the real and imaginary
parts of Ry, (r") for m = 0, 1, ..., €. Observe that the vorticity kernel Im[R3(r")] is identically zero.

buoyancy-driven poloidal flow, according to (133). The degree 4 vorticity is vis-
cously coupled to degree 3 poloidal flow and the degree 2 toroidal flow, according
to (133). Again we see that the strength of viscous coupling to the higher degree
(€ > 4) flows is considerably weaker than for the € < 4 toroidal flows.

We now present predictions of buoyancy-induced surface flow, based on the
degree € = 1,2 field of density perturbations derived from model SH8/WM13
(Woodward et al., 1993) and the & In p/d In v, scaling factor in Fig. 6b. In Fig. 23a
we show the predicted € = 1,2 surface divergence for an isoviscous mantle
[m8(r) = ny = 10" Pa s]. In Fig. 23b we show the surface divergence (for € =
1-6), produced when the € = 1,2 density perturbations interact with the depth-
invariant degree 1 field of lateral viscosity variations n(6, ¢) = n,[1 + v(6, ¢)],
where ¥(6, ¢) is shown in Fig. 18. Comparison of Figs. 23a and 23b shows that
the flow field distortion produced by the lateral viscosity variations is quite exten-
sive. The region of much “softer” mantle, underlying the Pacific—Antarctic ridge,
has strongly intensified the local vertical flow while significantly reducing its
strength elsewhere. The dominant strength of the downwellings, and the relatively
more diffuse upwellings, in Fig. 23a is now reversed in Fig. 23b, where the single
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FiG. 23. (a) The degree € = 1-2 surface divergence in an isoviscous mantle [i.e., 7(r, 6, ¢)/In, = 1],
calculated according to Eq. (151) with N = 10, due to the degrees 1-2 density perturbations derived
from model SH8/WM13. The 8 In p/6 In v, conversion factor is that shown in Fig. 6. (b) The degree
¢ = 1-6 surface divergence in a mantle with 3D viscosity n(r, 6, @), =1+ v(8, ¢), where (8, d)
is the degree 1 viscosity variation in Fig. 18, calculated according to Eg. (151) with N = 10. The
density perturbations are again obtained from the degree 1-2 heterogeneity in SH8/WM13, with § In
p/8 In v, from Fig. 6. (c) The degree ¢ = 1-6 surface radial vorticity, with 3D viscosity as in (b),
calculated according to Eq. (158) with N = 10. The density perturbations employed are as in (a)
and (b). In all cases the reference viscosity value is 7, = 10*' Pa s. The units on all scale bars are
rad/(10 Myr).
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FiG. 24. (a) The cross-correlation, at each degree €, between predicted divergence in Fig. 23a and
that in Fig. 23b. (b) The rms amplitude, at each degree €, of the predicted divergence in Fig. 23a (0,
divergence, no lateral viscosity), the predicted divergence in Fig. 23b (O, divergence, with lateral
viscosity), the predicted radial vorticity in Fig. 23c (A, vorticity, with lateral viscosity).

upwelling is clearly stronger than the adjacent downwellings. In Fig. 23c we show
the corresponding radial vorticity field (for € = 1-6). The regions of peak vortic-
ity are situated in the zones of nearly zero surface divergence that define the tran-
sition from upwelling to downwelling. A quantitative summary of the surface flow
predictions is presented in Fig. 24.

The degree € = 1 field of lateral viscosity variations in Fig. 18 is clearly an
overly simplified representation of the actual lateral variations of strength in the
Earth’s mantle. In Fig. 25 we present a more realistic representation of lateral
viscosity variations obtained, as in (155), from the depth-integrated € = 1-5 shear
velocity heterogeneity in model SH8/WM13:

S (4 by 8 ‘ m
o #) = £ 3 3 U <—") r dr]me, 9. (160)

(=1 m=—¢ b s ¢
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FIG. 25. The degree 1-5 field of normalized lateral variations of viscosity [i.e., »(6, ¢) in
Eq. (154)], obtained from the depth integrated degree 1-5 shear—velocity heterogeneity in model
SH8/WM13 according to Eq. (160). The factor f, in Eq. (160) is chosen such that the minimum value
of the field shown here is —0.99. The maximum value is +1.18.

In Fig. 25 we have chosen x = 0.99, such that min [v] = —0.99. The maximum
value of »(#, @) is 1.18 and consequently the viscosity variations in Fig. 25 imply
that, at any depth, 7(r, 0, ¢) will vary from a minimum of 0.01 73(r) to a maxi-
mum of 2.18 9d(r) (i.e., by a factor of 218 laterally).

We shall again consider the buoyancy-induced surface flow generated by the
interaction of the € = 1-2 density perturbations with the field of viscosity varia-
tions in Fig. 25. The predicted € = 1-2 divergence for an isoviscous mantle, with
7(r) = m, = 10%! Pa s, is shown again in Fig. 26a. In Fig. 26b we show the € =
1-6 surface divergence produced in the presence of the depth-invariant viscosity
structure n(6, ¢) = n[1 + v(6, ¢)], where v(6, ¢) is shown in Fig. 25. A com-
parison of Figs. 23b and 26b shows that the peak value of the divergence in the
latter case is significantly smaller than in the former case. This may appear some-
what puzzling, given that the field of viscosity variations employed in Fig. 26b
varies laterally by a factor 218, whereas in Fig. 23b the viscosity varied laterally
by a factor of 19 only. This behavior may be understood by noting that the regular
geometry of the degree 1 field of viscosity variations in Fig. 18, relative to the
geometry of the mantle buoyancy sources, is ideally placed for strongly focusing
the central Pacific upwelling. The relatively irregular and broken pattern of mantle
“softening” in Fig. 25 is not as effectively situated, relative to the mantle buoy-
ancy sources, and thus is less efficient at amplifying the surface flow. In Fig. 26¢
we show the € = 1-6 radial vorticity field generated in the presence of the lateral
viscosity variations in Fig. 25.
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FIG. 26. (a) The degree ¢ = 1-2 surface divergence in an isoviscous mantle li.e., n(r, 6, d)n, =
1], calculated according to Eq. (151) with N = 10, due to the degree 1-2 density perturbations derived
from model SH8/WM 13 (using & In p/8 In v, in Fig. 6). (b) The degree { = 1-6 surface divergence
in a mantle with 3D viscosity n(r, 8, §)/me = 1 + v(6, ¢), where v(, @) is the degree 1-5 viscosity
variation in Fig. 25, calculated according to Eq. (151) with N = 10. The density perturbations are as
in (a). (c) The degree £ = 1-6 surface radial vorticity, with 3D viscosity distribution and density
perturbations as in (b), calculated according to Eq. (158) with N = 10. In all cases the reference
viscosity value is 7, = 102' Pa s. The units on all scale bars are rad/(10 Myr).
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F16.27. (a) The cross-correlation, at each degree €, between the predicted divergence fields in Figs.
26a and 26b. (b) The rms amplitude, at each degree €, of the predicted divergence in Fig. 26a (O,
divergence, no lateral viscosity), the predicted divergence in Fig. 26b (O, divergence, with lateral
viscosity), the predicted vorticity in Fig. 26¢ (A, vorticity, with lateral viscosity).

A quantitative summary of the buoyancy-induced surface flows in Fig. 26 is
presented in Fig. 27. A comparison with Fig. 24 shows clearly that the introduc-
tion of shorter-wavelength components in the field of lateral viscosity variations
yields a divergence and vorticity spectrum that is “flatter” and thus more closely
resembles the observed spectrum in Fig. 4. The effect of higher-degree compo-
nents in the field of lateral viscosity variations is most dramatic in the case of the
radial vorticity field, which possesses a distinctly “red” spectrum in Fig. 24 and a
rather “blue” spectrum in Fig. 27.

We have observed that a more realistic field of lateral viscosity variations, as in
Fig. 25, acts as a “filter” that may suppress the surface expression of buoyancy-
induced flow in the mantle. This behavior was evident from the comparison of
Figs. 23b and 26b. The extent to which the viscosity “filters” the mantle flow field
depends on the relative alignment of the mantle buoyancy sources and the zones
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of weakness and strength in the mantle. This behavior is clearly analogous to the
filtering affect of the surface plates, discussed in Section 2 and demonstrated in
Fig. 8. We note that the analogy between plates and lateral viscosity variations
was indeed confirmed in Section 3.

4.5. Dynamic Surface Topography

In the previous section we observed that lateral viscosity variations in the man-
tle may have a great impact on the amplitude and spatial pattern of buoyancy-
induced flow. We shall now consider to what extent such viscosity variations will
affect the flow-induced boundary deflections. The result of this analysis is of great
importance because the gravitational field perturbations (e.g., the nonhydrostatic
geoid) are known to be very sensitive to the mutually canceling gravitational con-
tributions from flow-induced boundary deflections and the internal buoyancy
sources (e.g., Richards and Hager, 1984; Ricard et al., 1984; Forte and Peltier,
1987). It is therefore important to derive flow models that provide realistic (i.e.,
include all relevant physical effects) boundary deflections.

We shall begin by deriving explicit expressions for the boundary deflections in
terms of the buoyancy-induced flow in a laterally heterogeneous fluid shell. We
consider first the case of the outer boundary at r = a that separates the overlying
inviscid fluid (e.g., the global ocean layer) from the underlying viscous medium
(e.g., the mantle). The matching of normal stresses across the undulating outer
surface yields [see Eq. (V.8) in Appendix V] the following expression:

a r
glpd — pslda = —P(a™) + 2n(a)<a—t> + pidi(a), (161)

a—

in which da(6, ¢) is the undulation of the boundary relative to its reference lo-
cation at r = a, p§ = po(a*), p; = po(a™), and pg¢p,(a) = P,(a*) is the nonhy-
drostatic pressure field in the overlying inviscid fluid arising from self-gravitation.
The principal obstacle to be overcome, in the use of Eq. (161), is to obtain an
expression for the nonhydrostatic pressure P,(a~) in a fluid with lateral viscosity
variations. The usual procedure (e.g., Forte and Peltier, 1987) is to consider the
horizontal component of the conservation of momentum equation [i.e., Eq. (IV.8)
in Appendix IV]. In Appendix VI we present a mathematically efficient derivation
of the nonhydrostatic pressure using generalized spherical harmonics and the con-
cept of covariant differentiation, described in Phinney and Burridge (1973). We
thus find (see Appendix VI for details) that the spherical harmonic coefficients of
the flow-induced surface topography day are given by
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and the notation 2,:_,-,2 indicates summation over J = j, j + 2,j + 4, .. .. The
radial derivatives of the poloidal and toroidal flow scalars in (162) are readily
calculated from Eqgs. (143), (144), and (149).

The continuity of normal stresses across the lower bounding surface yields, in
analogy with Eq. (161), the following expression:

ou,
glps — piléb = —P,(b*) + 2n(b*)<a—b:> + po di(b), (163)

b+
in which 6b(0, @) is the undulation of the lower boundary relative to its undis-
turbed position at ¥ = b, p§ = po(b¥), p5 = po(b7), and pyd,(b) = P,(b™) is
the nonhydrostatic stress field in the underlying inviscid fluid (e.g., the outer core).
In analogy with Eq. (162) we then have
(¢ )e(b)

DS ey 4 2ED)

8o(pd — pg) 2 Rite g (Led)
in which X%"(b*) is directly obtained by evaluating those terms in Eq. (162) en-
closed by square brackets at r = b* rather than r = a~.

A striking aspect of Eq. (162) is the presence of terms that correspond to toroi-
dal flow. This may seem somewhat surprising, given that toroidal flow does not
involve any radial mass flux. The toroidal-flow contribution to surface topog-
raphy arises from its effect on dynamic pressure P,, as shown in Eq. (VL.7) in
Appendix VL

oby =
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FiG. 28. (a) The degree £ = 1-2 dynamic surface topography in an isoviscous mantle [i.e., 7(r, 6,
@)/mo = 1], calculated according to Eq. (162), due to the degree 1-2 density perturbations derived
from model SH8/WMI13 (using & In p/& In v, in Fig. 6). (b) The degree € = 1-6 dynamic surface
topography in a mantle with 3D viscosity n(r, 6, ¢)/n, = 1 + v(6, ¢), where v(6, @) is the degree 1
viscosity variation in Fig. 18, calculated according to Eq. (162). The density perturbations are as in
(a). () The topography difference, in the range € = 1-6, obtained by subtracting the topography in
(b) from the topography in (a). The units on all scale bars are kilometers.
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In the following illustrations of flow-induced surface topography we shall again
employ the degree 1-2 field of density perturbations derived from model SH8/
WM13 (Woodward et al., 1993) and & In p/d In v, in Fig. 6b. The two fields of
lateral viscosity variation we shall consider were defined in Egs. (155) and (160),
the former with x = 0.9 (thus implying a factor of 19 horizontal variation) and the
latter with x = 0.99 (implying a factor of 218 horizontal variation). The degree 1
field of lateral viscosity variations is shown in Fig. 18, and the degree 1-5 field
of viscosity variations is shown in Fig. 25.

The flow-induced surface topography at r = a, for an isoviscous mantle (18(r)
= 1),), is shown in Fig. 28a, in which we observe the clearly dominant degree 2
pattern. The degree 1-6 dynamic topography, which is produced in the presence
of the degree 1 field of lateral viscosity variations (again with 9§(r) = 1), is
shown in Fig. 28b. It is obvious that the topography in Figs. 28a and 28b are
virtually identical, and the relative difference, obtained by subtracting the latter
from the former, is indeed quite small as Fig. 28c shows. A quantitative summary
of the dynamic topography predictions is presented in Fig. 29. The difference, due
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FIG. 29. (a) The cross-correlation, at each degree €, between the predicted topography fields in
Figs. 28a and 28b. (b) The rms amplitude, at each degree €, of the predicted dynamic topography in
Fig. 28a (O, no lateral viscosity), the predicted dynamic topography in Fig. 28b (O, with lateral vis-
cosity), the topography difference in Fig. 28c (A, difference).
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a POLOIDAL CONTRIBUTION (L=1-6)
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FiG. 30. (a) The degree € = 1-6 contribution to the dynamic surface topography in Fig. 28b due
only to the poloidal mantle flow [calculated by setting ¢ = 0 in Eq. (162)]. (b) The degree £ = 1-6
toroidal flow contribution to the dynamic topography in Fig. 28b [calculated by setting p: = 0 in
Eq. (162)]. The superposition of the separate topography contributions in (a) and (b) yields the com-
plete topography shown in Fig. 28b. The units on all scale bars are kilometers.

to the introduction of the degree 1 viscosity variations, is dominated by a degree
3 component with a relative amplitude that is quite small.

In Fig. 30 we consider the separate poloidal and toroidal flow contributions to
dynamic topography shown in Fig. 28b. The poloidal contribution is almost a
factor of 6 greater than the toroidal contribution. It is, however, clear that had we
mistakenly assumed that the toroidal contribution was entirely negligible, then the
difference between the topography predictions (with and without lateral viscosity
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FiG. 31. (a) The cross-correlation, at each degree €, between the dynamic surface topography in
Fig. 28b and the poloidal flow contribution in Fig. 30a (O, total poloidal) and the toroidal flow contri-
bution in Fig. 30b (A, total toroidal). (b) The rms amplitude, at each degree €, of the predicted dynamic
topography in Fig. 28b (O, total), the separate poloidal flow contribution in Fig. 30a (O, poloidal
contribution), the separate toroidal flow contribution in Fig. 30b (A, toroidal contribution).

RMS AMPLITUDE [km]

variations) would have been much larger. A quantitative analysis of the poloidal
and toroidal topography contributions is provided in Fig. 31.

The dynamic surface topography produced in the presence of the degree 1-5
field of viscosity variations (again with 9J(r) = 7,) is shown in Fig. 32b, along
with the isoviscous prediction in Fig. 32a. Here we again have a clear manifesta-
tion of the strong insensitivity of dynamic topography to the effects of lateral
viscosity variations. The difference between the predictions (with and without
lateral viscosity variations) is shown in Fig. 32c. We point out that, although the
amplitude of the viscosity variations in the case of Fig. 32b are more than 10 times
greater than in the case of Fig. 28b, the relative difference in Fig. 28c increases
only slightly from about 5% to 8% in Fig. 32c. A quantitative summary of the
topography predictions in Fig. 32 may be found in Fig. 33. It is worth noting that
the introduction of shorter-wavelength viscosity variations yields a difference
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FIG. 32. (a) The degree € = 1-2 dynamic surface topography in an isoviscous mantle [i.e., 7(r, 6,
¢)/my = 1], calculated according to Eq. (162), due to the degree 1-2 density perturbations derived
from model SH8/WMI13 [using & In p/& In v, in Fig. 6]. (b) The degree € = 1-6 dynamic surface
topography in a mantle with 3D viscosity n(r, 6, $)/m, = 1 + v(8, ¢), where v(8, ¢) is the degree
1-5 viscosity variation in Fig. 25, calculated according to Eq. (162). The density perturbations are as
in (a). (¢) The topography difference, in the range € = 1-6, obtained by subtracting the topography
in (b) from the topography in (a). The units on all scale bars are kilometers.
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F1G. 33. (a) The cross-correlation, at each degree €, between the dynamic surface topography pre-
dictions in Figs. 32a and 32b. (b) The rms amplitude, at each degree €, of the predicted dynamic
topography in Fig. 32a (O, no lateral viscosity), the predicted dynamic topography in Fig. 32b (T, with
lateral viscosity), the topography difference in Fig. 32¢ (A, difference).

spectrum that is clearly “blue” and quite different from that displayed in Fig. 29.
In Fig. 34 we show the separate poloidal and toroidal flow contributions to the
dynamic topography. A comparison of Figs. 30 and 34 shows that the introduction
of shorter-wavelength viscosity variations has evidently led to a strong reduction
of the toroidal flow contribution while the poloidal flow contribution is relatively
unchanged.

We have so far considered only viscosity distributions with a spherically sym-
metric component that is independent of depth [i.e., 3(r) = 1,]. We now consider
the extent to which a depth variation of the horizontally averaged viscosity, when
coupled with the depth-invariant lateral viscosity variations in Eq. (160), will af-
fect the dynamic surface topography. We shall consider the following smooth
depth increase of the spherically symmetric viscosity:

n3(r) = n(%) . (165)
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FIG. 34. (a) The degree € = 1-6 poloidal flow contribution to the dynamic surface topography in
Fig. 32b [calculated by setting ¢/ = 0 in Eq. (162)]. (b) The degree £ = 1-6 toroidal-flow contribution
to the dynamic surface topography in Fig. 32b [calculated by setting p; = 0 in Eq. (162)]. The super-
position of the separate topography contributions in (a) and (b) yields the complete topography shown
in Fig. 32b. The units on all scale bars are kilometers.

The choice of 10 for the exponent in (165) implies the following depth increases:
N6(rs0)/na(a) = 3, n§(ri200)/m6(a) = 8, and Ni(reve)/ni(a) = 421. In Fig. 35a
we show the degree 1-2 dynamic surface topography produced in the absence of
lateral viscosity variations. A comparison with the isoviscous prediction in
Fig. 32a shows that the depth increase of viscosity in (165) leads to a nearly 50%
reduction in the amplitude of the surface topography. The flow-induced surface
topography generated in the presence of the degree 1-5 viscosity variations is
shown in Fig. 35b, and the difference, relative to Fig. 354, is shown in Fig. 35c¢. It
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Fi6. 35. (a) The degree € = 1-2 dynamic surface topography in a spherically symmetric mantle
with depth-varying viscosity n(r, 8, ¢)/m, = (a/r)", calculated according to Bq. (162). The degree
1-2 density perturbations employed here are derived from model SH8/WM13 [using 8 In p/8 In v, in
Fig. 6]. (b) The degree € = 1-6 dynamic surface topography in a mantle with 3D viscosity 5(r, 8, ¢)/
Mo = (@/N)' [1 + v(8, ¢)], where v(6, ¢) in the degree 1-5 viscosity variation in Fig. 25, calculated
according to Eq. (162). The density perturbations are as in (a). (c) The topography difference, in the
range £ = 1-6, obtained by subtracting the topography in (b) from the topography in (a). The units
on all scale bars are kilometers. :
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FiG. 36. (a) The cross-correlation, at each degree €, between the dynamic surface topography pre-
dictions in Figs. 35a and 35b. (b) The rms amplitude, at each degree €, of the predicted dynamic
topography in Fig. 35a (O, no lateral viscosity), the predicted dynamic topography in Fig. 35b (O, with
lateral viscosity), the topography difference in Fig. 35¢ (A, difference).

is important to note that, although the amplitude of the dynamic topography is
strongly reduced by depth increases of viscosity, the amplitude of the difference
between the predictions (with and without lateral viscosity variations) is almost
unchanged. Thus the 8% relative difference in Fig. 32¢ is increased slightly to
12% in Fig. 35c. In Fig. 36 we provide a quantitative summary of the topography
calculations in Fig. 35. We note, in comparison to Fig. 33, that the amplitude of
the degree € = 1,2 differences has substantially increased.

The separate poloidal and toroidal flow contributions to the dynamic surface
topography are shown in Fig. 37. Since poloidal flow involves the vertical trans-
port of mass we expect that depth increases of viscosity should more strongly
reduce the poloidal contribution to surface topography than the toroidal contri-
bution. This is indeed verified by comparing Figs. 37 and 34.

We have observed that the dynamic topography appears to be remarkably insen-
sitive to even very-large-amplitude horizontal variations of viscosity. This insen-
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FiG. 37. (a) The degree € = 1-6 poloidal flow contribution to the dynamic surface topography in
Fig. 35b [calculated by setting g¢ = 0 in Eq. (162)]. (b) The degree € = 1-6 toroidal flow contribution
to the dynamic surface topography in Fig. 35b [calculated by setting p! = 0 in Eq. (162)]. The super-
position of the separate topography contributions in (a) and (b) yields the complete topography shown
in Fig. 35b. The units on all scale bars are kilometers.

sitivity is markedly different from the strong sensitivity of the flow field to lateral
viscosity variations (see, e.g., Fig. 26). We may understand this insensitivity of
the dynamic topography with the following argument. The buoyancy-induced
flow field scales inversely with viscosity, and therefore regions of reduced vis-
cosity correspond to increased flow velocities and vice versa. The normal stresses
that deflect the boundaries scale as the product of viscosity and the flow field, and
this leads to an effective “cancellation” of the viscosity effect. In regions of in-
creased viscosity the normal stresses would be increased for a given flow, but the
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actual flow must itself be reduced in these regions, and consequently the normal
stress (and hence the dynamic topography) is relatively unaltered by the lateral
viscosity variation. We may also observe this effective cancellation in direct quan-
titative terms. As shown in (132), degree 1 viscosity variations directly lead to the
generation of additional degree € — 1, € + 1 poloidal flow and degree € toroidal
flow, by degree € density perturbations. On the other hand, the expression for
dynamic topography in (162) implies that the degree 1 viscosity variations will
couple the degree € — 1, € + 1 poloidal flows and degree € toroidal flow to degree
¢ topography. Clearly, then, the effective “splitting” of the flow field by lateral
viscosity variations is nullified when the “split” flow-components are recombined
to generate surface deflections.

4.6. Nonhydrostatic Geoid

The gravitational potential perturbations which arise over a convecting mantle
are the sum of the potential perturbations due to the internal density perturbations
which drive the flow and the potential perturbations due to the flow-induced
boundary deflections (e.g., Pekeris, 1935; Richards and Hager, 1984; Ricard er al.,
1984; Forte and Peltier, 1987). The surface gravity perturbations are largely con-
trolled by the mutually canceling gravitational contributions from the flow-
induced surface topography (at » = a) and the internal density anomalies. In the
previous section we have observed that while the depth variation of mantle vis-
cosity has a strong impact on the amplitude, and hence the gravity effect, of the
surface undulations, the presence of very strong lateral variations of viscosity has
a much smaller impact on the amplitude and pattern of the surface topography.
We therefore expect that the nonhydrostatic geoid will show a similar insensitivity
to the presence of lateral viscosity variations, and hence be dominantly sensitive
only to radial viscosity variations. In the following we demonstrate this explicitly.
In Appendix VII we provide explicit expressions for the nonhydrostatic geoid in
a self-gravitating mantle.

In Fig. 38a we show the € = 2-3 nonhydrostatic geoid prediction for an iso-
viscous mantle (9§(r) = 7,), employing the € = 2-3 density heterogeneity de-
rived from model SH8/WM13 and 6 In p/8 In v, in Fig. 6b. The degree 1-6
nonhydrostatic geoid, produced when the € = 2 -3 density anomalies interact with
the degree 1-5 viscosity variations in Fig. 25, again with n§(#) = 7,, is shown in
Fig. 38b. Apart from a small reduction in the amplitude of the geoid highs in the
South Pacific and in southern Africa, Fig. 38b is nearly identical to the isoviscous
prediction in Fig. 38a. A map of the difference between these two predictions is
presented in Fig. 38c, where we observe that the peak difference is localized in
the South Pacific. The rms amplitude of the difference field is 12 m, compared to
the rms amplitude of 100 m in Fig. 38a (i.e., the relative effect of the lateral vis-
cosity variations is only 12%). We note that the difference field in Fig. 38c¢ is
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F1G. 38. (a) The degree ¢ = 2-3 nonhydrostatic geoid prediction for an isoviscous mantle [i.e., (r,
0, ¢)/m, = 1], calculated on the basis of the degree 2—3 density perturbations derived from model
SH8/WM13 [using & In p/d In v, in Fig. 6]. (b) The degree € = 1-6 nonhydrostatic geoid prediction
for a mantle with 3D viscosity n(r, 8, ¢)/m, = 1 + v(6, ¢), where v(0, @) is the degree 1 -5 viscosity
variation in Fig. 25. The density perturbations are as in (a). (c) The geoid difference, in the range € =
1 -6, obtained by subtracting the geoid in (b) from that in (a). The units on all scale bars are meters.
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F1G. 39. (a) The cross-correlation, at each degree €, between the nonhydrostatic geoid predictions
in Figs. 38a and 38b. (b) The rms amplitude, at each degree €, of the predicted geoid in Fig. 38a (o,
no lateral viscosity), the predicted geoid in Fig. 38b (O, with lateral viscosity), the geoid difference in
Fig. 38c (A, difference).

largely reflective of the small effect of the lateral viscosity variations on the flow-
induced surface topography (see Fig. 32c). A detailed summary of the geoid pre-
dictions in Fig. 38 is provided in Fig. 39.

In Fig. 40a we now show the € = 2-3 nonhydrostatic geoid prediction for
a laterally homogeneous viscosity with a depth variation n.(a/r)' given in
Eq. (165). This geoid prediction has reversed sign relative to the isoviscous pre-
diction in Fig. 38a because the strong increase of viscosity with depth has strongly
reduced the amplitude of the surface topography (compare Figs. 32a and 35a),
thus allowing the internal density perturbations to dominate the geoid signal. The
degree 1-6 geoid prediction, calculated when the degree 15 viscosity variations
are introduced [with 98(r) = ny(a/r)'°], is shown in Fig. 40b. Again we observe
that the effect of very large lateral variations of viscosity is small, and this
is confirmed by the small amplitude of the difference field in Fig. 40c. The



F1G. 40. (a) The degree € = 2-3 nonhydrostatic geoid prediction for a spherically symmetric man-
tle with depth-varying viscosity n(r, 6, ¢)/m, = (a/r)", calculated on the basis of the degree 2-3
density perturbations derived from model SH8/WM13 (using & In p/& In v, in Fig. 6). (b) The degree
¢ = 1-6 nonhydrostatic geoid prediction for a mantle with 3D viscosity n(r, 8, ¢)/m, = (a/r)"° [1 +
v(6, ¢)], where v(6, ¢) is the degree 1-5 viscosity variation in Fig. 25. The density perturbations are
as in (a). (c) The geoid difference, in the range € = 1-6, obtained by subtracting the geoid in (b) from
that in (a). The units on all scale bars are meters.
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F1G. 41. (a) The cross-correlation, at each degree €, between the nonhydrostatic geoid predictions
in Figs. 40a and 40b. (b) The rms amplitude, at each degree €, of the predicted geoid in Fig. 40a (0,
no lateral viscosity), the predicted geoid in Fig. 40b (3, with lateral viscosity), the geoid difference in
Fig. 40c (A, difference).

rms amplitude of this difference field is 14 m, compared to the rms amplitude of
108 m in Fig. 40a (i.e. a relative difference of only 13%). We again note that the
difference field in Fig. 40c is a reflection of the small effect of lateral viscosity
variations on the flow-induced surface topography (see Fig. 35¢). A quantitative
summary of the geoid predictions in Fig. 40 is provided in Fig. 41.

When considering the conclusions obtained in this section, and in Section 4.5,
it is worth recalling that all our demonstrations have employed idealized depth-
independent lateral viscosity variations. It is our expectation that the imposition
of the large-amplitude lateral variations in Fig. 23, at all depths in the mantle,
probably overestimates the large-scale variations that actually exist, especially in
the deep mantle (e.g., Zhang and Christensen, 1993). The final confirmation of
our conclusions will be possible when we can reliably map the amplitude of lateral
viscosity variations throughout the mantle. Encouraging progress is now being
made thanks to recent high-pressure melting experiments (Zerr and Boehler,
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1993) and also as a result of recent inferences of lateral variations of seismic Q in
the deep mantle (Romanowicz and LeStunff, 1993).

47. Differential Rotation in the Mantle

In Section 3.2 we pointed out that a degree 1 toroidal flow field in the mantle
implies that any infinitesimally thick spherical shell at radius r will rotate, as a
rigid body, with angular velocity given by Eq. (79). In a mantle with spherically
symmetric viscosity (and free-slip boundary conditions) the angular velocity is
constant with depth, and thus the entire mantle rotates as a rigid body. This rigid-
body rotation is a degenerate solution of the governing flow equations, and it may
be eliminated by transferring to a new frame of reference. This degeneracy is also
removed by introducing lateral viscosity variations. We have seen that lateral vis-
cosity variations, distributed throughout the mantle, may produce buoyancy-
induced toroidal flow with magnitude comparable to the poloidal flow. In particu-
lar, the degree 1 toroidal flow will imply a depth-varying net rotation within the
mantle. As emphasized in Section 3.2, this differential rotation of the mantle will
be significant only if the lateral viscosity variations are distributed over a suffi-
ciently large depth interval.

The most visible manifestation of net rotation within the mantle is provided by
the degree 1 toroidal-flow component of the tectonic plate motions. In Fig. 42a
we show the degree 1 radial vorticity derived from the Minster and Jordan (1978)
absolute plate-motion model (AM1-2) based on the hotspot reference frame. This
figure clearly illustrates the dominant east—west lithosphere rotation. In Fig. 42b
we show the degree 1 component of the buoyancy-induced radial vorticity field in
Fig. 26¢. The predicted net rotation of the lithosphere in Fig. 42b agrees rather
well with the observed net-rotation of the plates in Fig. 42a. This agreement sug-
gests that the hotspot reference frame may indeed be dynamically plausible since
it yields absolute plate motions (i.e. net rotation) that are readily explained by the
interaction of large-scale buoyancy-induced flow with large-scale lateral viscosity
variations (e.g., in Fig. 25).

The explicit expressions for flow throughout the mantle, given by Eq. (123),
allow us to readily describe the depth-varying net rotation in the mantle. The de-
gree 1 toroidal mantle flow, given by Eq. (144), arising from the interaction of
degree 1-2 density perturbations with degree 1-5 viscosity variations (Fig. 25)
is illustrated in Fig. 43. The depth variation of the net-rotation vector components
w,(r), w,(r), w.(r) is calculated on the basis of expression (79). The surface rota-
tion w,(r = a), w,(r = a), w(r = a) is of course identical to the degree 1 toroidal
flow in Fig. 42b. It is clear from Fig. 43 that there is essentially no differential
rotation between the lithosphere and adjacent underlying mantle, as we pointed
out in Section 3.2. The net rotation within the mantle changes significantly below
a depth of about 1400 km. Near a depth of 1700 km the net rotation vanishes and
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a OBSERVED L=1 VORTICITY

FIG. 42. (a) The degree £ = 1 radial vorticity of the tectonic plate velocities (Forte and Peltier,
1987) derived from absolute-motion model AM1-2 of Minster and Jordan (1978), which is based on
the hotspot reference frame. (b) The degree € = 1 component of the predicted buoyancy-induced
surface radial vorticity shown in Fig. 26¢. The units on all scale bars are rad/(100 Myr).

changes sign, resulting in striking contra-rotation of the lower 1000 km of the
mantle relative to the top 1000 km of the mantle. We also note that net rotation
in the mantle appears to be dominantly in the Z direction (i.e., along the Earth’s
rotation axis).

It is interesting to note that the net rotation in the mantle, arising from the de-
gree 1 toroidal flow, also carries a nonvanishing angular momentum. The contri-
bution to the Earth’s angular momentum, from flow in the mantle, is given by the
general expression

Lmamle flow — fv r Xv P dV7 (166)

in which v is the mantle flow velocity and V denotes integration over the volume
of the mantle. It may be shown that the angular momentum in Eq. (166) will
vanish for all poloidal flows and all toroidal flows, except for the degree 1 toroidal
flow [we assume that the density distribution is essentially spherically symmetric:



POLOIDAL-TOROIDAL COUPLING IN MANTLE FLOW 91

6000 |- | %’ Wy
!
.
T 5500 |- )
=, g
uy 50001 T e
D I
g 4500 ,:\ Wy
4000 | ,
)
i
3500, ‘L L

-04 00 04 0.8
rad/(100 Myr)

F1G. 43. The depth variation of the net rotation in the mantle, corresponding to the degree € = 1
toroidal flow in the mantle, as given by Eq. (79). The degree 1 toroidal flow, calculated according
to Eq. (144), is due to the interaction of degree 1-2 density perturbations [derived from model
SH8/WM13 using 6 In p/8 In v, in Fig. 6] with the 3D viscosity 7(r, 8, ¢)/m, = 1 + v, @),
where ¥(6, ¢) is the degree 1-5 viscosity variation in Fig. 25. The reference viscosity value is
n, = 10> Pas.

p = po(r)]. The angular momentum associated with the degree 1 toroidal flow
may be shown to be (algebraic details omitted here):

8 a
Lmamlc flow — ?WL pO(r)[wx(r)ﬁ + wy(r)ﬁ + wz(r)z]r4 dr. (167)

Equation (167) provides the basis for the following definition of the “effective”
average rotation rate of the mantle:

a

, po(Nw;(r)ridr

() = »
[ eutrrrear

b

(168)

On the basis of the rotation rates in Fig. 43, we thus obtain

0.15 rad —0.004 rad

() = ———, (o) =—"T"—"7"—,
100 Myr 100 Myr
—0.52 rad

() = 100 Myr
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5. CONCLUSION

In this chapter we have considered three different approaches to the treatment
of the effects of lateral viscosity variations in the Earth’s mantle. The first and
simplest approach is based on the assumption that the tectonic plates are the most
extreme, and hence, only important manifestation of lateral rheology variations.
It is therefore possible to characterize the effect of surface plates only in terms
of their geometry and thus circumvent on explicit treatment of lateral viscosity
variations. The requirement that instantaneous plate motions be described by
rigid-body rotations imposes a partitioning of the internal density perturbations
dp(r, 6, @) into two orthogonal components; 6p = 6p + Sp. The component
6p(r. 6, ¢) produces mantle flow whose surface pattern exactly corresponds to a
permitted combination of rigid-body rotation of the individual plates. The com-
ponent 6p(r, 6, @) instead produces surface flow that is completely inconsistent
with rigid-body rotations of the plates and therefore “sees™ a no-slip surface
boundary (i.e., the plates are “locked” and immobile). We emphasized that this
partitioning of internal buoyancy sources renders the interpretation of observed
plate motions completely nonunique. Clearly, the observed plate motions reflect
only the buoyancy-induced flow arising from 8 and tell us nothing about the
internal flow excited by dp. An important illustration of the consequences of this
nonuniqueness was provided in Fig. 14, where we showed that plate motions,
arising from buoyancy sources only beneath midoceanic ridges or only confined
to regions beneath subduction zones, provide equally good matches to the ob-
served plate motions. This geometric treatment of the surface plates also provided
us with an explicit expression [Eqs. (34)—(35)] for the coupling of the poloidal
and toroidal components of the plate motions. This relationship demonstrates that
the equipartitioning of kinetic energy between poloidal and toroidal plate veloci-
ties depends on the plate geometries.

Although this geometric treatment of surface plates is attractive, owing to its
ease of implementation, it entirely ignores the flow dynamics and the rheological
properties of the lithosphere. A lithospheric plate cannot be wholly rigid, as as-
sumed in the geometric treatment, and it must become progressively more de-
formable (i.e., less viscous on average) with increasing depth. In addition, the
zones of weakness at plate boundaries must have some finite horizontal extent
rather than being mathematically infinitesimal as is implicit in the geometric
treatment.

If we assume that the lateral variations of viscosity in the sublithospheric mantle
are negligible compared to those in the lithosphere, it is then possible to formulate
an inverse problem for the lateral variations of viscosity in the lithosphere that are
consistent with the observed tectonic plate velocities. The inferred viscosity varia-
tions in the lithosphere (Fig. 15) clearly show an overall pattern of weak plate
boundaries and strong plate interiors. Our inferences suggest, however, that not
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all plate boundaries are equally weak and that a purely thermal interpretation may
not be valid. The East Pacific rise is a zone of rapid divergence with very high
surface heat flux, and therefore we might expect that it would be a prominent low-
viscosity region. Similarly, the subduction zones in the northwest Pacific are pre-
sumably colder than average and therefore should be stiffer than average (again,
assuming a purely thermal origin for viscosity variations). Instead we observed
that the lithosphere is softer than average in the subduction zones and that the
most prominent zone of weakness appears to be on the plate boundary in western
North America. This suggests that nonlinear effects (i.e., strain-induced softening)
are important for understanding lateral variations of viscosity in the lithosphere.

The lateral variations of effective viscosity may indeed be strongest in the litho-
sphere but the global-scale models of seismic velocity heterogeneity in the mantle
suggest that very-long-wavelength variations of viscosity will be significant
throughout the mantle. We have shown that a physically elegant, and mathemati-
cally efficient, procedure for modeling the effects of 3D viscosity variations in
spherical fluid shells is provided by a variational treatment of the momentum con-
servation equation. This variational treatment is based on the result (proved in
Section 4.1) that the difference between the rate of viscous dissipation of energy
and the rate of energy released by buoyancy is an absolute minimum. This mini-
mum principle yields a quasianalytic formulation of buoyancy-induced flow that
explicitly describes the coupling of both poloidal and toroidal flows to internal
density perturbations by lateral viscosity variations. We have employed this varia-
tional formulation to show that long-wavelength lateral viscosity variations in the
mantle have a strong effect on the buoyancy-induced flow field. Toroidal flow is
excited with a strength that is less than, but comparable to, the poloidal flow. We
find that the net rotation of the lithosphere, given by absolute plate-motion models
employing the hotspot reference frame, is readily explained by the interaction of
very-long-wavelength buoyancy-induced flow with lateral viscosity variations that
are correlated to the seismically inferred mantle heterogeneity.

An important outcome of our investigation of the effects of 3D viscosity hetero-
geneity is the observation that lateral viscosity variations have a rather small effect
on flow-induced boundary topography and hence the nonhydrostatic geoid. We
find that even if the viscosity varies laterally by two orders of magnitude, the
relative difference between the geoid predicted with and without these lateral vis-
cosity variations is only of order 12%. We conclude from this that the nonhydro-
static geoid is overwhelmingly sensitive to radial viscosity variations and is much
less sensitive to lateral viscosity variations. This result is very important because
it suggests that previous geoid-derived inferences of radial viscosity variation in
the mantle, based on the seismically inferred density models, will not be biased
by the neglect of lateral viscosity variations. A 12% error is essentially negligible,
when compared to the much larger uncertainties in the current seismic inferences
of 3D mantle heterogeneity.
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APPENDIX I.
HorizoNTAL GRADIENTS OF SPHERICAL HARMONIC FUNCTIONS

We derive here explicit expressions for the following horizontal gradients of
the scalar spherical harmonic functions Y¢(6, ¢):

. 0 E N
V.Yie, ¢) =6 Y Yi, ¢) + n o 8d> Yi(0, ¢) (L)
AYI("(B, ¢) = f X V,Y}"(H, ¢)
= _9 1
a sin 6 6(15

w0, ¢) + $ — Y"'(e ¢) (12

The operations V, (i.e., horizontal gradient on a unit sphere) and A [ —¢ A is the
quantum-mechanical angular momentum operator (e.g. Backus, 1958)] appear
repeatedly in formulations of elasticity and hydrodynamic theory in spherical ge-
ometry. Rather unwieldy expressions for (I.1) and (1.2) may be found in Morse
and Feshbach (1953, p. 1899). We shall find it most useful to obtain expressions
for (I.1) and (1.2) in terms of a special combination of fixed Cartesian basis vec-
tors. The expressions derived below will be employed often in the main text and
in the following Appendixes.
From Edmonds (1960, Eq. [5.9.17]) we obtain the result

€+ 1 ¢
viyy =¢€ 2¢ 1] Yeéen T €+ D 20 = 1 Yée (1.3)
in which we have two special cases of general vector spherical harmonics (Ed-
monds, 1960, Eq. [5.9.10]) which we write as

e 2 Y'i(nm — q; 1 q| €m)é,, (L4)

g=-1

in which é, are the unit polarization vectors (Edmonds, 1960, Eq. [5.9.4]) de-
fined as
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A

1. . . R 1 R
e, = RV (X + 1), e, =1, é_, = V2 ® — ), (L)

where t = \/ — 1, X, §, £ are the unit basis vectors in a rectangular Cartesian frame
of reference, and the (n m — ¢; 1 q | €m) are the Clebsch-Gordon coefficients that
define the coupling between degree €=1 and degree €=n. Using (1.4) we then
have that

Yoo =Yl +1m+ 1,1 — 1| €mé_,
m €+ 1m; 10| €me, (L6)
v+ Tm = 1,11 | €m)é,,

and

Y2, , = ”’“(€—1m+11—1|€m)e,
"€ — 1m; 10| eme, (17)
+""(€——lm—lll|€m)e,,

Explicit expressions for the Clebsch—Gordon coefficients in (1.6) and (I.7) may
be found in Condon and Shortley (1963, p. 76). Inserting (1.6) and (1.7) into (I1.3)
we obtain

V m = €C ijl + e + l C~m 1 m+l
\/—( T ( )ce e-
&, (EbyYe, — (€ + Dby Yi)) (1.8)
+ 2 ey + €+ Ve v
V2

where

" [(6 +m+ €+ m+ 1)]”2 and

ce 2€ + D2€ + 3)
(19)

o [€ = m+ D+ m D) "2
c 2€ + D2 + 3)

Since A = (L, where L is the quantum-mechanical angular momentum opera-
tor, we then obtain from Edmonds (1960, Eq. [5.9.14]) the result

AY?=uwWEeH + 1) YE. (1.10)
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Employing (I.4), we write (I1.10) as
AY? = 0WEE + D [Ye'Em + 1,1 — 1| €m)é_,
+ Yi@m; 10| €m)é, + Y '(m —1;1 1] €m)é,).

(L11)

Explicit expressions for the Clebsch-Gordon coefficients in (I.11) may again be
found in Condon and Shortley (1963, p. 76) and we finally write (I.11) as

AYm — [é“] amy;n+1 + é mYIH _ é' Cl7”’YI”WI (I 12)
[ ¢Le o 4 (4 ¢ ) .
V2 V2
where
at = [ — m) (€ + m+ 1] 1.13)

For completeness we also derive the expression for 7 Y{'(6, ¢) [equivalent to
the vector harmonic P,,,(@, ¢) in Morse and Feshbach (1953, p. 1898)] where #
is the unit vector along the radius. From Edmonds (1960, Eq. [5.9.16]) we have

'\Y'n - e 1 m e Y™ L14
rry = . e+ . .
¢ 20+ 1 20+ 1 (@19

Using (1.6) and (1.7), and following the derivation which led to (I.8), we obtain

5 e, : O
rre= — (= @Y + e Y
‘ V2 ‘
+t &by Y + b YT, (1.15)
+ é] (_Cfmymfl + CmlemfI
€ C+1 €~1 £ ¢-1
V2

The complex basis vectors é, in (1.8), (I.12) and (I.15) have the following useful
orthogonality property (Edmonds, 1960, Eq. [5.9.7]):
& -8, =0, 1.16)

where the asterisk denotes complex conjugation.

Expressions (1.8) and (I.12) are particularly useful when V,Y¢ and AY{ are
integrated or differentiated over a spatial domain because the basis vectors é, are
constant and therefore unaffected by these operations.

APPENDIX II. SpHERICAL HARMONIC COUPLING RULES

We shall summarize here the principal results, concerning the coupling of two
scalar spherical harmonics, which will be often employed in the main text. We
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shall also describe a technique, based on the elegant formalism of LeBlanc (1986,
1987), which permits the direct and rapid numerical computation of any given
spherical harmonic coupling coefficient.

From the classical theory of angular momentum coupling in quantum mechan-
ics we have the following basic result (e.g., Edmonds, 1960, Eq. [4.6.5]):

. 6+¢6
Y0, $)Ye, ¢) = > ['g‘ ’Z;,’?] Yr(6, ¢)*, (IL.1)

=€, -

where

m, m, m| _ € € €\(€ € ¢
[61 0 e} = [(2¢, + D2, + DRE + 1)]”2<0 0 0><m1 m, m)

(IL.2)

and the asterisk denotes complex conjugation. The symbols in parentheses in
(I.2) are the 3-j symbols of Wigner, which are described extensively in Edmonds
(1960, pp. 45-50). The expressions in (II.1) and (I1.2) differ slightly from that in
Edmonds because the spherical harmonic basis functions we employ (here and
throughout this chapter) are normalized such that

1 2 T
e f f Y0, ¢)Yex0, ¢)* sin 0d0ded = 0¢,.,0 mym,- (I1.3)
4 Jo 0 4

The spherical harmonics we employ are therefore obtained from the Y7 defined in
Eq. [2.5.29] of Edmonds (1960) by setting 47 — 1.

The coupling coefficient in (IL.2) may also be expressed in terms of the
Clebsch—Gordon coefficients as follows:

momy om| _ o [@6+ pee+ n)”
¢, ¢ ¢ =1 € + 1)

X (€,0; €,0[€0)(€,my; €m,[€m, + m,).

(IL4)

The coupling coefficients in (I1.2) will be identically zero unless the following
conditions are satisfied:

Imi| = € |mo| < €3 |m| < € (IL.5)
m, + my, + m =0, (11.6)

6, — &l < €< ¢ + 6, (IL7)
€ + €, + € = even. (I1.8)

The condition (I1.8) ensures that the sum in (IL.1) is actually restricted to € = €,
+ 0,6, +0 -2, +46—4,..../0 — 4

A useful illustration of Eq. (II.1) is provided by the simple example in which
we couple Yy and Y7 (m = 0, £ 1). According to (I1.1), we write




98 ALESSANDRO M. FORTE AND W. RICHARD PELTIER

€+1
m|(0 ¢)sz(0 ¢) — 6:52_1 [’Zn "112 -em] = m{l Y™, ¢)*
(1L.9)

If we employ expression (I1.4) and the Clebsch—Gordon coefficients (€,m,; 1m, |
€m, + m,) tabulated in Condon and Shortley (1963, p. 76), we have

m, 0 = m 0 —m, _
Yom * Y, n*

V3 bRl YEL + VB bP Y,

moyl — | L mm = 1o m 1 —m 1 m—1
Ye' ¥, [ 1 el—l}yﬁl +[€,1 e,+1 Yeii

m, YO

I

¢
= —V3em YRt + VR ey,
(IL.11)
_ m —1 -m, + 1 m
RS [61] L6 ]Y" i
m -1 —m +1 +
1 1

_ Lym-—1 i
= _\/— e Yeo, + \/—Ce.m'Y?'H,

in which the quantities b7 and c7 are defined in Eq. (1.9) of Appendix I. Results
(I1.10)—(I1.12) are quite useful and they are employed in Appendix III.

In Section 4 of the chapter we make extensive use of the generalized scalar
spherical harmonics, introduced in the geophysical literature by Phinney and Bur-
ridge (1973). We shall therefore summarize the symmetry properties and coupling
relations needed in Section 4. The generalized associated Legendre functions
PY™(0) in Phinney and Burridge (1973) are identical to the matrix elements of
finite rotation d¢),(¢) in Edmonds (1960, pp. 55-58). The generalized spherical
harmonic functions

e, ¢) = d,0)em (I1.13)

are related to the complete rotation-matrix elements D$) (¢, 6, v) in Edmonds
(1960, Eq. [4.1.10]) as follows:

Y@, ¢) = DO (e, 6, 0). (11.14)

From the properties of d{,(9) (see Eqgs. [4.1.25], [4.2.6], and [2.5.29] in Ed-
monds) we may readily verify that
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~ 1
Yim@, ¢) = \/TTI Yy, @), (I1.15)

where the Y7 in (IL.15) are the usual scalar spherical harmonics in (II.3). Owing
to the result (II.15), we shall find it useful to employ the modified generalized
spherical harmonics Y™, which are defined as

Y@Im(e’ ¢) = m Y’(ym(e’ ¢) (11.16)
— 3O DO, 6, 0).

This definition ensures that Y¥ reduces, when N = 0, to the usual Y. In addition,
this definition also leads to the following simplified orthonormality relation (ob-
tained by employing (I1.16) in Eq. [4.6.1] of Edmonds):

1 27 T
—f J Yim(6, ¢)* YimA(0, @) sin 0d0dd = O¢,,0m.m,- (AL1T)
49 Jo 0
From the symmetry relations of the functions D in (I1.16) we have [Eq. [4.2.7]
in Edmonds (1960)] the following useful result:
Yin(@, ¢)x = (=N YN0, @). (I1.18)

If we now employ the definition of the Y%, in (II.16), in Eq. [4.3.2] of Edmonds,
we then obtain the following important generalized coupling relation:

046,
Yym9, o)Yime, ¢) = >, [(2€, + D26 + DL + 1))
e=[6— 6
6 6 \[(6 6 €\,
x (N, N, N) <ml m, m)Yffv @, ¢)*.

(I1.19)

The Wigner 3-j symbols in (I1.19) will be identically zero unless the following
conditions are satisfied:

Imi| < € [my| < € |m| < €, (I1.20)
IN|| < €5 |N,] < €5 [N < ¢, (I1.21)
m + my, + m =0, (I1.22)
N+ N, +N=0, (I1.23)

6, — &) <€<€ + 6. (I1.24)

It is worth emphasizing that condition (II.8) does not apply to (II.19) and thus
the sum over € must include all integer values between the limits specified in
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(I1.24). The Wigner 3-j symbols in (I.2) and (II.19) have two important symme-
tries [Eqgs. [3.7.5] and [3.7.6] in Edmonds (1960)], which are exploited in Section 4:

(el ez €3) = (—1)51”'2"""»‘( el ez €3 >’ (1125)
m, m, ms —m, —m, —Hy

Cpreo(6 6 G)_ (6 6 &\_ _(& & ¢
m, m, M, m, m;, wms my, m, m /)’

(I1.26)

Relation (I1.26) is simply an expression of the result that an odd number of per-
mutations of the columns is equivalent to multiplication by (— 1)¢+¢+6,

The practical application of the theory developed in Sections 3 and 4 obviously
depends on the ability to rapidly and accurately calculate the value of any given
Wigner 3-j symbol. We shall now describe an efficient computational scheme we
have implemented, based on the elegant group-theoretical formulation developed
by LeBlanc (1986, 1987). LeBlanc has shown that any Wigner 3-j symbol, and its
associated Clebsch—Gordon coefficient, may be directly evaluated using the fol-
lowing closed-form expression:

6 6 &) _ (e
<ml, m22 ”:> = ((2€ )+ NG €imy; €2m2|€3 — my)
3 3

172
= (| Lkl sta
(J+ D! k! 5d!s!d!

X Fh (s1,dy; 83,d,),

(I1.27)
in which
J=4, + & + ¢,
ki, =J — 2¢,
s; =€ + my, (I=i=3) (I1.28)
d=4€ — m,

m, + my, + my = 0,
and where the functional F, (- - -) has a binomial-type expansion:

k3

Fk3(51> dy; s, dy) = 20 (_l)i<kl~3>[sl]k3[[dz]kgi[szli[dl]i’ (I1.29)

in which [x]; = (x)(x — 1)(x — 2) - - - (x — i + 1) is a lowering factorial with



POLOIDAL-TOROIDAL COUPLING IN MANTLE FLOW 101

[x]o = 1. The algebraically transparent expressions (I1.27)—(IL.29) should be con-
trasted with the corresponding expression in Eq. [3.6.11] of Edmonds (1960),
which involves a complicated sum over an unspecified range. Expressions
(11.27)—(I1.29) may be directly implemented, in a straightforward manner, with
only a few lines of computer code. The resulting numerical scheme, which di-
rectly generates the value of any given Wigner 3-j symbol, is found to be very
efficient and stable. The efficiency of this scheme may be significantly improved
by taking maximum advantage of the symmetry properties [i.e., Egs. (I.25) and
(11.26)] of the Wigner 3-j symbols.

As discussed in LeBlanc (1986), the Wigner 3-j symbol possesses all the sym-
metries of its Regge symbol counterpart defined by

; S 5 S
(f' :2 6-‘) =\|d d, d:]. (11.30)
I ko ke ks

The Regge symbol in (II.30) is invariant under all even permutations of its rows
and columns, is invariant under transposition, and is multiplied by (— 1) for all
odd permutations of its rows and columns. Such symmetries include the important
relations (I1.25) and (I1.26). We may search the Regge symbol in (I1.30) for the
element with the smallest value and, by row and/or column interchanges. we
translate this element to the bottom right corner initially occupied by k;. With
each row and/or column interchange we multiply by (—1)7, and we also redefine
the values of all the symbols 4, s;, and k, in (I1.27). By this procedure we obtain
the smallest possible value for the upper summation limit in (I1.29) and thus re-
duce the computational effort. Expression (II.27) now provides us with a very
efficient method for calculating individual Wigner 3-j symbols and we therefore
avoid the usual methods based on the recursion relations provided, for example,
in Edmonds (1960).

APPENDIX III. ANALYTIC HARMONIC DECOMPOSITION OF HORIZONTAL
DIVERGENCE AND RADIAL VORTICITY

We derive here analytic expressions for the spherical harmonic coefficients of
the horizontal divergence and radial vorticity of the surface velocity field of N
rigid plates. The starting point for the derivation is the set of equations (7), (9),
(11), and (12), in Section 2.1 of the main text.

Introducing the spherical polar representation of the Cartesian coordinates x; in
Egs. (7) and (9), we have

X, = asin 6 cos ¢, x = asin 6 sin &, x; = a cos 6. (T1L1.1)
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Employing (II1.1) in Egs. (7) and (9) yields the following result:

a i 1 i YO i =1
O, = V3 (. Y0, ¢) + wiY90, ¢) + 0 Y76, ¢)],  (IIL2)

where
0 = o= [~ — o) + ) — b))
V2
w) = 0y — wf (111.3)
w. = L [(w) — @) + ) — o]
V2 ’
and
Qv = % [w¥Y1(0, &) + b Y0, ¢) + &V Y70, )], (114)
where
WY = 1 (—o) + wh), 0 = o, 0" = L (@) + w¥). (IIL5)
V2 ’ U 2

By virtue of Eq. (I.12) in Appendix I we obtain, on the basis of (II1.2), the
following:

La . _ 5 . .
AQ, = V3 [6_(@_Y? + wiYl) + é(—w Y7 + w.Y}))
3 (I1L6)
— é(opY7' + Wi YD)
The last term on the right-hand side of Eq. (12) is, by virtue of (I11.4),
Ly = 2 eyt + gy + vy, (I1.7)
a V3 -
We may similarly show, on the basis of (II1.2), that
- AN, = ¥ [0\ Y] + wiY) + o' Yi']. (111.8)
a ‘3 -

Employing result (1.8) of Appendix I, we have the following harmonic decompo-
sition of the horizontal gradient of the plate function in Eq. (11):
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V, H(, ¢) =V, ; (H)zY?(0, ¢)

= 2 (Hp)¢ {\/— [cpYpt! + (€ + Degm'Yer

- éo[€b’;’Y?+l - (€ + 1)b?—1Y?~1]

2 [cemYps' + (€ + l)C?‘-l'YE"l‘]}

= ez Yy {e_\/% l:(Hi)Zl]l(l = 64)

(I1L.9)
X (€ = Dep' + (Hyea' (€ + 2)Ce'"]
- éo [(Hi)2"~1(1 - 8430)

X (€ = D)bp, — (Hym (€ + 2),)4

A

\/— [(H 1 = bw)
X (€ = Degr' + (H)eh' (€ + 2)02":'}-

If we now employ result (1.12) in Appendix I, we also obtain the following result:

AH(6, ¢) = A ; (H)zYr (6, @)

é
‘Z(H)e{\/— ag¥pt' + é,mYy — \/Izafmy'e"'}

LEY(;{

¢~ (H)p~! + éom(H)r

¢ —m—1 mt1
VAL (H))? }

Combining results (I11.6) and (II1.9) we then obtain

(I11.10)
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1 . _
= Vi H Al = 3 % Yy {\5 (L Y + wh Yi)A)E
+ (—0" Y7+ o) YI(B)P (IL.11)

5 @ 11+ o Yl‘)(—*l)”‘(A,-)e"’*},
where
(Adp = HYEI( = 8e)€ — Degny + (H)E (€ + 2)cr,  (IL12)
Byr = (H)p (1 = 8e)€ — Dbpey = (H)p (€ + 2)bp. (1IL13)

Employing results (I1.10)—(II.12) in Appendix II, we obtain from (III.11) the
following:

€m

_i VH - AQ =0 Ye{ AN & 1 — ) Bis (A
+ (B — (I — Se)ecm (B!
" —a;—(l) (1 — Se)er=! (A
— i (=DM (ADETH)

— cem@AE' + (=)

T2 (- A
\/— €+1

+ (1 — Be)bp_ (= D"(ADem *

+ (1 = dw)ep! (Bp=! — CE"'(Bf)Z”H‘]}-

(111.14)

From result (III.14) we immediately see that the spherical harmonic coefficients
(Vy - v)7 of the plate divergence in Eq. (11) of the main text are given by

\Z )m—E Lﬂo e+ 2 (Cor + \f(c' ] (IIL15)

where
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(CLYE = br(A)E, + cr (B

(1= Bbe (A, — ceny (B
(€ = —cem(A)ea' + cr(= D" A)a ' * (IL16)
+ (1= B)ler (A — e (= DM (A)e ¥

(CL)r = bE(— D (A)aT* — cim(BYE

+ (I = S)lbe (= D"(ADen* + e (Bes!'].

We may also express the harmonic coefficients of the horizontal divergence in
terms of the Cartesian components of the plate rotation vectors. Employing result
(II1.15) and (I11.16) and the definitions (III.3), we obtain

Y = 2 [(SHr(@) — oF) + (SHrw) — )

(I1I1.17)
+ ($H (@i — )],
where
SHe = = [(C' e — (Coel,
1
(SHe = —5 [(CHyy + (CHET, (II1.18)
Sy = (Co ¢-

We now derive analytic expressions for the radial vorticity field. Combining
results (IT1.6), (I11.8), and (II1.10) we obtain the following:

1
~Lam an, - Lung,
a a

2 Ym{ (ﬂ)' Y() + (()()Y )a‘ m— I(H )mfl

€n

+ (—w" Y7 + ol Y)Y m(H)? (I11.19)

1
+ —= (@YY + wiY)ap—'(H)p™!

\/_

+ 2w, Y + )Y + vt Y,")(H,-)'("}.
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Applying results (I1.10)—(II.12) of Appendix II to (II1.19), we obtain the follow-
ing, after some manipulations:

L Am - Aq, - Luaa,
a a

=3 Ym[\f (B + 2 (B + o (E';)z"], (111.20)
where
(EL)r = (Hyp [bpagn™" + cp(m — 1)]
+ H)eH (1 — Se)biyain — cem'(m — 1),
(B = (H)pa[4br — cpap, — cimain] (IL.21)
T (H)E (1 = 8e)[4bey + cimlay, + cpmlagn],
(EL)r = (H)ea'[bpars' — cem(m + 1]
+ (H)p (1 — 6e)[bp_ ap=t + cp=(m + D).

Results (IIL.7), (I11.20), and (II1.21) show that the spherical harmonic coefficients
(F -V X v)¢ of the radial vorticity in Eq. (12) of the main text are given by

(f-VxV)m=N§93(Ei)m+“’—‘3(5f)m+9i(15f)m
CoElvaTT T 2 VT g

2
+ % 00 (@Y6,1 + Wb, + ¥ 8m,—l)'
We may also express the harmonic coefficients of the radial vorticity in terms of
the Cartesian components of the plate rotation vectors. Employing result (I11.22)
and the definitions (IT1.3) and (II1.5), we obtain
N—1

F-VXwy= ; [(RDE(wi — o) + (RY)F (w5 — wb)

(I11.23)
+ (RF@) — o)) + 2 S Ny,
where .
R = % [ELw — (B,
(Rr = 5 [E e + (i), (I1L.24)
Ry = % (Edr,
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2
Nr]n = g(am,fl - 6m|)9
2
Ny =[5 Booi + 80 (111.25)
2
Np = 7§ 5,,,0.

APPENDIX IV. MOMENTUM CONSERVATION IN A MEDIUM
WITH 3D VISCOSITY VARIATIONS

The equation of momentum conservation, in Cartesian tensor form, for quasi-
static deformation in a continuum is

9,T, + pap = 0, (IV.1)

(where T;; = T is the stress tensor, p is the density, and 9:¢ is the body force
per unit mass. The inertial force pdu;/dt that normally appears on the right-hand
side of (IV.1) is neglected because the viscosity of the medium (e.g., the Earth’s
mantle), and hence its Prandtl number, is extremely large. The total stress 7;; may
be written as the sum of its deviatoric and spherical components as follows

T, = —P&; + 7, (IV.2)
where
P = —3T, (Iv.3)
and
7y = Ty — 3Tudy. (IV.4)

As indicated in Egs. (1) and (2) of the main text, the deviatoric stress 7; in a solid
medium creeping with deviatoric strain rate Ej; is given by

T, = 29E; = n(duw; + ou; — £0,u,0,), (Iv.5)

in which 7 is the effective viscosity [see Eq. (3) of the text] of the solid medium.

From Egs. (IV.2) and (IV.5), we obtain
0,T; = —o,P + %776{(31(’/‘1() - %(ain)(akuk) + no;0;u

+ (0;m)0u;) + d:(u;0m) — u;0;(0m).
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Employing vector notation, we may rewrite this last expression as
V-T=-VP+inV(V-u) — 3V -uwVy + nVu (V.6)
+ (Vn-Vu + V@ - Vnp) — (u- V)Vn.
Employing the vector calculus identity
VA-B)=A -VB+B -V)VA+ A X (VXB)+B X (VXA),
we may rewrite (IV.6) as
V-T=-VP+inV(V-u — 3V -u)Vy (vV.7)
+ nV2u + 2(Vy - V)u + Vn X (V X u).
Combining (IV.1) and (IV.7) now yields
—~VP, + #gV(V - u) + nV2u — ¥V - u)Vy
+ 2(Vp - Viu + Vn X (V X u) + p, V¢, + pVép, = 0, (IV.8)
. in which we have removed the expression
—VP, + pVopo = 0

for the hydrostatic equilibrium state and P,(|P,/P,| << 1), pi(|pi/po] << 1),
& ,(| /o] << 1) are respectively the perturbations to the pressure, density, and
gravitational potential associated with the flow u.

We may formally eliminate the nonhydrostatic pressure P, by taking the curl of
(IV.8):

V2V X u) + Vi X Vau + Vi X V(V - u) + 2V X [(Vn - V)u]

+V X [V X (VX ul + A(p—‘rgﬁ +p"—¢'> =0, (IV.9)
r

in which g, = —dd./dr, p, = dp,/dr, and A = r X V. The scalar equation
describing (in the limit of no lateral viscosity variations) the poloidal flow is ob-
tained by applying the operator A - (i.e., r - VX) to Eq. (IV.9):

nV2|:V2ru, = lai (r*v - u)} + (V) + V- V][Vru, — 2(V - w)]
rar

V2V -u) — A [Vnp X V(V-u] — V(ry) - Vu
— An - V3V X u) — 2A -V X [(Vn - V)u]

_A.VX[VnX(qu)]:Az<M+PO_¢’I>’
r r

(Iv.10)
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in which u, = 7 - u, 7 = dn/dr, A> = A - A is the horizontal Laplacian operator
(Backus, 1958). In deriving Eq. (IV.10) we have made use of the vector calculus
identities

VXMAXB =B-VA - A-VB+ AV .B — BV - A,
r-V:A =V -A - 2V.A,
and
r-(A-VB)=A -V(r-B) — A-B.

A comparison of Eq. (IV.10) (when V - u = 0) with the corresponding Eq. (2) in
Stewart (1992) shows that the latter is incomplete and incorrect. The existence of
lateral viscosity variations ensures that buoyancy forces [on the right-hand side of
Eq. (IV.10)] directly excite toroidal flow, in addition to poloidal flow, and this
toroidal flow is implicitly described by the last four terms on the left-hand side of
Eq. (IV.10). The scalar equation describing (in the limit of no lateral viscosity
variations) the toroidal flow is obtained by applying the operator r - to Eq. (IV.9):

VA -u) + An - Vu + Ay - V(V-u) + 2A - [(Vn - V)u]
+ A-[Vp X (VX uw]=0 (dV.1D)

APPENDIX V. Viscous STRESS ACTING ON AN UNDULATING SURFACE

We consider here a surface, in a material continuum, obtained by distorting a
spherical surface r = ¢ by a small amount §¢(6, ¢) such that |§c(8, ¢)/c| << 1.
The equation describing this surface may be written as

J(r, 6, ¢) = c, (V.1)

in which f(r, 6, ) = r — 0¢(0, ¢). It is clear from (V.1) that Vf will be normal
to this surface and thus we have

Ai=Vf=7F — éV, oc(, ¢), (V.2)

in which 7 is the vector normal to the undulating surface, # is the unit radial vector,
and V, is the horizontal gradient operator (see Appendix I). The normal vector A
is, to within order |8 ¢/c[?, a unit vector. The stress vector t acting on each element
of the undulating surface is given by

tr=c+ 6c)y=14- T (c + 8¢, V.3)

in which T (¢ + 8¢) is the stress tensor evaluated at » = ¢ + Sc. In an effectively
viscous continuum we have (see Appendix IV)
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T=-PI+ 2K, (V.4)

in which P is the pressure, 7 is the dynamic viscosity, and E is the deviatoric
strain-rate tensor. Combining (V.2)—(V.4), we obtain

. .. P
t= —(Py + P)f + 2q(E,,} + E.0 + Es) + —V, bc, (V.5)
c

in which we have ignored the second-order terms P, §¢ and ¢ E. Employing the
expressions for the strain-rate tensor components in spherical polar coordinates
(e.g., Morse and Feshbach, 1953, p. 117), we obtain from (V.5) the following
expression

Py(c + b¢) v
c

Tou, 1 9
+ fzn[ 8”r -3¥- u] + n[v,,u,. + ra—r(“—:’ﬂ ., (V.6)
r=c+8c r=c+68c

in which P, and P, are respectively the hydrostatic and nonhydrostatic pressure,
V., is the horizontal gradient operator on the spherical surface r = ¢, and u, =
uy 6 + uy ¢ is the horizontal flow velocity. The hydrostatic pressure gradient is
dPy/dr = —pogo, and thus we may write (V.6) as the following first-order accu-
rate expression:

t(r=c+ 0c) = —F[Py + Pli=cssc + oc

Py(r = ©)
C

ou, 1 Jdfu
+ f217|:(;: = SV . u:| + n[VHu, + r5(7H>] :

V.7)

tr=c+ 6c) = —F[Py + P, — pogobcl—. + V.bc

The continuity of stress across the undulating surface requires that t(r = ¢ + 8¢*)
= t(r = ¢ + 6c¢7), and thus, using (V.7), we obtain the following matching
conditions:

ou, 1
—P,(r = c*) + po(r = c*)gobc + 277[ au a §V : “]
r

ok

du, 1
= —P/(r=c)+ po(r =c)gbc + 27 L _-v.u ,
or 3 -

(V.8)

d d
n[VHu, +r a—r<u_rH>:| = n[VHu, +r 8_r<u_rﬂ>] K (V.9)
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APPENDIX VI. Dynamic TOPOGRAPHY WITH LATERAL
VISCOSITY VARIATIONS

We derive here explicit expressions for the spherical harmonic components of
the dynamic surface topography 8ay, on the basis of Eq. (161) in the main text.
The covariant equations of momentum conservation, obtained by Phinney and
Burridge (1973, see their Eq. [4.10]) applied to the problem of quasistatic defor-
mation, yield the following expression:

d
P L0+ (TO) + 3T + (1)) = 204(T

= QSUT g + (T~ )] + 2p ()7 = 0, (VLD

in which the terms (7*#)y are the generalized spherical harmonic coefficients of
the contravariant stress tensor

T® = —P,e* + 2nE®, (V1.2)

where e is the contravariant representation of 6, and E*# is the contravariant
strain-rate tensor defined in Eq. (109) of the main text. Substitution of Eqs. (110)
and (111) of the main text into Eq. (V1.2) yields

d 1 1
N YN Y?f][(— - —)(U*)z + —Q@'(UO):} e,
€m dr r r

souy

2 (Tyyeen = 3 3 [ yelQsU=y v, (VL3)

&m uv

1
> (T )pYym = ; (PPYy + > > [ Y] ~ QU - 20 Y,
€&m m stouyv

where (UP)y = (U*)y + (U~ )g. By virtue of the orthogonality property and
coupling relation [see Eqgs. (II.17) and (II.19) in Appendix II] for generalized
spherical harmonics Y™, we then obtain from (VI.3) the following:

(=
r

> QU — 2U°)]

st

(T*-)r = (P +

{+s

X 2 [2€ + D(2s + DR2J + 1)]'”? (V1.4)

J=le—s|

><€sJ€sJ -
00 0)\—m ¢t m—1+)T >
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—1)y=2 AN 1 + (—1)e+s+

X [(2¢ + DHR2s + DH(2J + D)2
e s J € = J o ~
x (2 —2 0><—m t om— z>’7’ wn
€43 [ — (__1)(+s+./:|
% J:;ﬂ-; [ 2

X [(2¢ + D@2s + 1D(2J + D]

€ s J £ = J .
% (2 -2 0><*m ¢ m-z>"’ }
(VL5)
I 2
@y + @ = == 3 {[(— - ;) Uy, + ;m(UO);]

+s
1 ,+_ — 1 C+s+J
" [ ( )

J=l€—s|

[(2€ + D@2s + 1)

¢ s J £ s J
172 m—t
X e D <1 -1 0><~m L om - z)"’

d 1\ & [ = (=
B <dr a r>(U )i J:\;—s\ [ 2 ]

X [(2¢ + DR2s + DQ2J + D)2
> € s J € s J .
1 _1 0 —m t m — t ns s

where (UT)g = (U*)p — (U~ ). If we now substitute expressions (VI.4)—(VL.6)
into Eq. (VL.1), and we employ the free-slip (i.e., 7~ = T°* = 0), zero radial
velocity (i.e., U° = 0) boundary conditions that obtain at r = a, we then find
that

(VL6)
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Ur):
—(Pr(r=a") = —p; ()@ + (D" 2 {Q;[( r)»] )

{+s

X Z [2¢€ + D@2s + DR2J + D2

J=l=sl2

(€ s N os T
OOO —mtm_tnl

Qg U’ ,; €+s
+§(~1)'"295{[( )»] 3

r - J=je=s|2

X [2¢€ + DH(2s + DH@2J + 1]

X e S J e S J m—1
2 —2 O —m t m — t n;

T\t Cts—1
- [——(U )] S o[ee + 1)

r = J=l€=s|+1.2

e are oy 2 g

4 K J .
X(——m ; m—t)nj}

(_l)m ﬁ PN\t .\'i 0\t
t a0 E{[rdrzw ) + 204 dr(U).;}

st

r=a

€+s

X E [2¢ + DH2s + DQ2J + 1)]'"?
J=[€¢-sl.2

€ s J\[ € s J _,

X <1 -1 0><—m t m— t>m
d2 €+s—1

- [r—(UT)@] 2 lee+

dr? jug— I=l=sl¥12

€ s J

X (2s + DQRJ + 1)]”2<1 1 O>

>< € S ] m-—1t
-motom =) (VL7)



114 ALESSANDRO M. FORTE AND W. RICHARD PELTIER

in which we employ the notation ¥,_, , to imply a sum over the terms with J = k,
k+2,k+4,....According to Eq. (119) in the main text, we may relate the flow
scalars U", U", U° to the corresponding poloidal and toroidal flow scalars as
follows: '

d m m
W = —mf[ﬂ + ’ﬁ],
dr r
204 qr, (VL)

U
Wy = —202 2,
r

where « = \/ —1, p# and g are respectively the spherical harmonic coefficients
of the poloidal and toroidal flow scalars. If we now substitute Eq. (VI.7) into
Eq. (161) of the main text and employ (VI.8), we then find

go(ps — pa)dar = (p¢ — pi NPE(@ — (=1 2, 6(Q4)

1 d i €+s
X [— ﬁ] S P4 m s Dy

rodr|._,- s=fcs.2

0O¢
- (=1 e 2 200

1 st

1 dp! e+s /
X {[— i] > Pyt m,s, t)nT’ﬂ[i]
rodr|,_,— s=l=sl2 I g

C+s—1

X > Pl ms, z)n;"'}

J=l€—s|+1,2
(—1)n dp. . 2(Q3)? dp:
— QS — 4 i
Q¢ Z, Al dar? roodr|, -
€+s
X X Pt m s Dy
J=l€—s|,2
€+s—1
d*q.
+ Pj e’ X : t m—t s
L[rdrz]w 2 Dm0 } (VL9)

in which

P, m, s, 1) = [(2€ + D@2s + DQ2J + D]

X€s.l€sl
k —k O/)\-m t m — t)’
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In the limit of no lateral variations of viscosity, it is readily shown that Eq. (VL.9)
reduces to

dap =

m [_rdﬁpz’ L e+ dL] . Y@
go(ps — pi) dr? r ar |,_,- g

APPENDIX VII. NONHYDROSTATIC GEOID IN A SELF-GRAVITATING MANTLE

We provide here a brief derivation of the nonhydrostatic geoid produced by
buoyancy-induced flow in a self-gravitating mantle. The derivation closely fol-
lows that in Appendix A in Forte and Peltier (1987) and corrects the typographical
errors present there.

The total gravitational potential perturbation due to internal density anomalies
and boundary deflections is

£
47aG
(@)e(r) = (Une(r) + 2;:1_ - Ao, (2) Sayr

€+1
47bG b
_l’_ —_ m

2¢ + 1 Apen <r> (©b),

(VIL.1)

in which G is the universal gravitational constant, 6 a is the boundary perturbation
of the outer surface and Ap,,, = 2.2 Mg/m? is the corresponding density jump,
0b is the perturbation of the core—mantle boundary (CMB) and Ap,,, = 4.43 Mg/
m? is density jump across the CMB. The term (U, )#(r) is the gravitational poten-
tial due to internal density anomalies:

a €
2?71(}1 f L= (e ar, (VIL.2)

b optH

(Uin)e(r) =

where r- = min (7, ¥') and r. = max (r, r"). As shown in Egs. (162) and (164) of
the main text, the surface topography (8a)7 and CMB topography (8b)# contains
contributions (¢b,)¢/g, arising from self-gravitation. Equation (VIIL.1) is therefore
an implicit equation for (¢,)#(r = a,b), which may be solved by evaluating
(VIL1) at r = a and r = b and then solving the resulting two equations for
(¢ ))#(a) and (¢ )7 (b). In this manner we obtain

26+1 -1
(p)r@ 3 3 3 N b
o = YA {(1 K.){ K,) K(,K,,<a> ]

€+2
U, b\ U,  Ap,,
X [(1 - K) =+ K,,<—> e W (VIL3)
p a) p p

26+1 e+2
b Ap..( b
X (1 ~ K, + (—) Kb> Ar + %(—) Bg"],
a p \a
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in which
€+2 -1
“ r’ ! r ¢ b ! !
v=| (—) oy dr's U= | (—> ()i (r') dr',
b a b r
3 A 3 b\ Ap.,
K, = ———Pm g, = 7 ) e,
20+ 1 p 2+ 1 \a/ p

where p = 5.52 Mg/m? is the Earth’s mean density, A} is the surface topography
in the absence of self-gravitation [i.e., when (¢ )7 (a) = 0 in Eq. (162)], and Bf
is the CMB topography in the absence of self—graviteition [i.e., when (¢ )7 (b) =
0 in Eq. (164)]. The term (¢,)#(a)/g, in (VIL.3) is, of course, the nonhydrostatic
geoid.
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